Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Negative Differential Conductance & Hot-Carrier Avalanching in Monolayer WS2 FETs

    Thumbnail
    Name:
    NegativeDifferentialConductance.pdf
    Size:
    5.199Mb
    Format:
    PDF
    View/Open
    Author
    He, G.; Nathawat, J.; Kwan, C.-P.; Ramamoorthy, H.; Somphonsane, R.; More... Zhao, M.; Ghosh, K.; Singisetti, U.; Perea-López, N.; Zhou, C.; Elías, A.L.; Terrones, M.; Gong, Y.; Zhang, X.; Vajtai, R.; Ajayan, P.M.; Ferry, D.K.; Bird, J.P. Less...
    Date
    2017
    Abstract
    The high field phenomena of inter-valley transfer and avalanching breakdown have long been exploited in devices based on conventional semiconductors. In this Article, we demonstrate the manifestation of these effects in atomically-thin WS2 field-effect transistors. The negative differential conductance exhibits all of the features familiar from discussions of this phenomenon in bulk semiconductors, including hysteresis in the transistor characteristics and increased noise that is indicative of travelling high-field domains. It is also found to be sensitive to thermal annealing, a result that we attribute to the influence of strain on the energy separation of the different valleys involved in hot-electron transfer. This idea is supported by the results of ensemble Monte Carlo simulations, which highlight the sensitivity of the negative differential conductance to the equilibrium populations of the different valleys. At high drain currents (>10 μA/μm) avalanching breakdown is also observed, and is attributed to trap-assisted inverse Auger scattering. This mechanism is not normally relevant in conventional semiconductors, but is possible in WS2 due to the narrow width of its energy bands. The various results presented here suggest that WS2 exhibits strong potential for use in hot-electron devices, including compact high-frequency sources and photonic detectors.
    Citation
    He, G., Nathawat, J., Kwan, C.-P., et al.. "Negative Differential Conductance & Hot-Carrier Avalanching in Monolayer WS2 FETs." Scientific Reports, 7, (2017) Springer Nature: https://doi.org/10.1038/s41598-017-11647-6.
    Published Version
    https://doi.org/10.1038/s41598-017-11647-6
    Type
    Journal article
    Publisher
    Springer Nature
    Citable link to this page
    https://hdl.handle.net/1911/97783
    Rights
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
    Link to License
    https://creativecommons.org/licenses/by/4.0/
    Metadata
    Show full item record
    Collections
    • Faculty Publications [4988]
    • Materials Science and NanoEngineering Publications [352]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map