Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transformations and Transitions from the Sylvester to the Bezout Resultant

    Thumbnail
    Name:
    TR99-343.pdf
    Size:
    5.251Mb
    Format:
    PDF
    View/Open
    Author
    Chionh, Eng-Wee; Goldman, Ronald; Zhang, Ming
    Date
    June 17, 1999
    Abstract
    A simple matrix transformation linking the resultant matrices of Sylvester and Bezout is derived. This transformation matrix is then applied to generate an explicit formula for each entry of the Bezout resultant, and this entry formula is used, in turn, to construct an efficient recursive algorithm for computing all the entries of the Bezout matrix. Hybrid resultant matrices consisting of some columns from the Sylvester matrix and some columns from the Bezout matrix provide natural transitions from the Sylvester to the Bezout resultant, and allow as well the Bezout construction to be generalized to two polynomials of different degrees. Such hybrid resultants are derived here, employing again the transformation matrix from the Sylvester to the Bezout resultant.
    Citation
    Chionh, Eng-Wee, Goldman, Ronald and Zhang, Ming. "Transformations and Transitions from the Sylvester to the Bezout Resultant." (1999) https://hdl.handle.net/1911/96509.
    Type
    Technical report
    Citable link to this page
    https://hdl.handle.net/1911/96509
    Rights
    You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
    Metadata
    Show full item record
    Collections
    • Computer Science Technical Reports [245]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map