Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scalability and Data Placement on SGI Origin

    Thumbnail
    Name:
    TR98-305.pdf
    Size:
    12.04Mb
    Format:
    PDF
    View/Open
    Author
    Chauhan, Arun; Ding, Chen; Sheraw, Berry
    Date
    April 1, 1998
    Abstract
    Cache-coherent non-uniform memory access (ccNUMA) architectures have attracted lots of academic and industry interests as a promising direction to large scale parallel computing. Data placement has been used as a major optimization method on such machines. This study examined the scalability and the effect of data placement on a state-of-the-art ccNUMA machine, SGI Origin, using 16 processors. Three applications from SPLASH-2 are used, FFT, Radix and Barnes-Hut. The results showed that FFT and Radix cannot scale to 16 processors with 70% efficiency even for the largest data sizes tested. Barnes-Hut doesn't scale for small data size but scales linearly for large input size. The results also showed that data placement does not make any difference on performance for all three applications. We attribute these results to the effect of the advanced uni-processor used on the Origin, R10K, the optimizing compiler, and the aggressive communication architecture. Some of our results are quite different from the predictions of two recent simulation studies on directory-based ccNUMA machines (Holt:ISCA96) and (Pai:HPCA97), especially on FFT. These differences are partly due to the fact that the machine models used in previous simulation studies are different from the Origin machine in some important aspects. Our results also include data sizes that are larger than any of the previous simulation studies. To increase our confidence on the latency numbers and data placement tools, we also measured memory latencies using micro-benchmarks.
    Citation
    Chauhan, Arun, Ding, Chen and Sheraw, Berry. "Scalability and Data Placement on SGI Origin." (1998) https://hdl.handle.net/1911/96488.
    Type
    Technical report
    Citable link to this page
    https://hdl.handle.net/1911/96488
    Rights
    You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
    Metadata
    Show full item record
    Collections
    • Computer Science Technical Reports [245]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map