Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Verification of Fair Transition Systems

    Thumbnail
    Name:
    TR97-286.pdf
    Size:
    19.12Mb
    Format:
    PDF
    View/Open
    Author
    Kupferman, Orna; Vardi, Moshe Y.
    Date
    August 27, 1997
    Abstract
    In program verification we check that an implementation meets its specification. Both the specification and the implementation describe the possible behaviors of the program, though at different levels of abstraction. We distinguish between two approaches to implementation of specifications. The first approach is trace-based implementation, where we require every computation of the implementation to correlate to some computation of the specification. The second approach is tree-based implementation, where we require every computation tree embodied in the implementation to correlate to some computation tree embodied in the specification. The two approaches to implementation are strongly related to the linear-time versus branching-time dichotomy in temporal logic. In this work we examine the trace-based and the tree-based approaches from a complexity-theoretic point of view. We consider and compare the complexity of verification of fair transition systems, modeling both the implementation and the specification, in the two approaches. We consider unconditional, weak, and strong fairness. For the trace-based approach, the corresponding problem is fair containment. For the tree-based approach, the corresponding problem is fair simulation. We show that while both problems are PSPACE-complete, their complexities in terms of the size of the implementation do not coincide and the trace-based approach is easier. As the implementation is normally much bigger than the specification, we see this as an advantage of the trace-based approach. Our results are at variance with the known results for the case of transition systems with no fairness, where no approach is evidently advantageous.
    Citation
    Kupferman, Orna and Vardi, Moshe Y.. "Verification of Fair Transition Systems." (1997) https://hdl.handle.net/1911/96470.
    Type
    Technical report
    Citable link to this page
    https://hdl.handle.net/1911/96470
    Rights
    You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
    Metadata
    Show full item record
    Collections
    • Computer Science Technical Reports [245]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map