Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Compiler Support for Machine-Independent Parallelization of Irregular Problems

    Thumbnail
    Name:
    TR94-243.pdf
    Size:
    7.877Mb
    Format:
    PDF
    View/Open
    Author
    von Hanxleden, Reinhard
    Date
    December 1, 1994
    Abstract
    Data-parallel languages, such as HIGH PERFORMANCE FORTRAN or FORTRAND, provide a machine-independent data-parallel programming paradigm in which the applications programmer uses a dialect of a sequential language annotated with high-level data-distribution directives. Identifying parallelism in data-parallel applications typically is straightforward, but making efficient use of this parallelism for irregular applications, such as molecular dynamics or unstructured meshes, is a challenge due to the limited compile-time knowledge about data access patterns. This dissertation establishes the thesis that spatial locality of the underlying problems can be used as a basis of compiler support for parallelizing such applications. The work done for supporting this thesis and for parallelizing applications in general can be divided into three parts, which correspond to different aspects of parallelizing compilers for different architectures. Value-based mappings express the spatial locality characteristics of an application and assist the compiler in computing a distribution with both a balanced computational workload and high data access locality. The GIVE-N-TAKE data-flow framework is an extension of Partial Redundancy Elimination particularly well suited to advanced code-placement tasks such as communication generation. Loop flattening is a code transformation to overcome SIMD specific control flow limitations when executing nested loops with varying inner loop bounds, which are typical for irregular problems. To illustrate this thesis, the FORTRAN 77D compiler at Rice University has been extended with value-based alignments and distributions, a communication placement mechanism based on the GIVE-N-TAKE data-flow framework, and general infrastructure for handling irregular subscripts. This dissertation describes the techniques involved in these extensions and provides experimental results for various irregular applications compiled for a distributed-memory architecture.
    Description
    This work was also published as a Rice University thesis/dissertation: http://hdl.handle.net/1911/16894
    Citation
    von Hanxleden, Reinhard. "Compiler Support for Machine-Independent Parallelization of Irregular Problems." (1994) https://hdl.handle.net/1911/96449.
    Type
    Technical report
    Citable link to this page
    https://hdl.handle.net/1911/96449
    Rights
    You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
    Metadata
    Show full item record
    Collections
    • Computer Science Technical Reports [245]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map