Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Elastic Tasks: Unifying Task Parallelism and SPMD Parallelism with an Adaptive Runtime

    Thumbnail
    Name:
    TR15-02.pdf
    Size:
    664.6Kb
    Format:
    PDF
    View/Open
    Author
    Agrawal, Kunal; Sarkar, Vivek; Sbîrlea, Alina
    Date
    February 11, 2015
    Abstract
    In this paper, we introduce elastic tasks, a new high-level parallel programming primitive that can be used to unify task parallelism and SPMD parallelism in a common adaptive scheduling framework. Elastic tasks are internally parallel tasks and can run on a single worker or expand to take over multiple workers. An elastic task can be an ordinary task or an SPMD region that must be executed by one or more workers simultaneously, in a tightly coupled manner. The gains obtained by using elastic tasks, as demonstrated in this paper, are three-fold: (1) they offer theoretical guarantees: given a computation with work W and span S executing on P cores, a work-sharing runtime guarantees a completion time of O(W/P+S+E), and a work-stealing runtime completes the computation in expected time O(W/P + S + E lgP), where E is the number of elastic tasks in the computation, (2) they offer performance benefits in practice by co-scheduling tightly coupled parallel/SPMD subcomputations within a single elastic task, and (3) they can adapt at runtime to the state of the application and work-load of the machine. We also introduce ElastiJ — a runtime system that includes work-sharing and work-stealing scheduling algorithms to support computations with regular and elastic tasks. This scheduler dynamically decides the allocation for each elastic task in a non-centralized manner, and provides close to asymptotically optimal running times for computations that use elastic tasks. We have created an implementation of ElastiJ and present experimental results showing that elastic tasks provide the aforementioned benefits. We also make study on the sensitivity of elastic tasks to the theoretical assumptions and the user parameters.
    Citation
    Agrawal, Kunal, Sarkar, Vivek and Sbîrlea, Alina. "Elastic Tasks: Unifying Task Parallelism and SPMD Parallelism with an Adaptive Runtime." (2015) https://hdl.handle.net/1911/96416.
    Type
    Technical report
    Citable link to this page
    https://hdl.handle.net/1911/96416
    Rights
    You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
    Metadata
    Show full item record
    Collections
    • Computer Science Technical Reports [245]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map