Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Computer Science
    • Computer Science Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding Unfulfilled Memory Reuse Potential in Scientific Applications

    Thumbnail
    Name:
    TR07-6.pdf
    Size:
    734.3Kb
    Format:
    PDF
    View/Open
    Author
    Marin, Gabriel; Mellor-Crummey, John
    Date
    October 5, 2007
    Abstract
    The potential for improving the performance of data-intensive scientific programs by enhancing data reuse in cache is substantial because CPUs are significantly faster than memory. Traditional performance tools typically collect or simulate cache miss counts or rates and attribute them at the function level. While such information identifies program scopes that suffer from poor data locality, it is often insufficient to diagnose the causes for poor data locality and to identify what program transformations would improve memory hierarchy utilization. This paper describes a memory reuse distance based approach that identifies an application’s most significant memory access patterns causing cache misses and provides insight into ways of improving data reuse. We demonstrate the effectiveness of this analysis for two scientific codes: one for simulating neutron transport and a second for simulating turbulent transport in burning plasmas. Our tools pinpointed opportunities for enhancing data reuse. Using this feedback as a guide, we transformed the codes, reducing their misses at various levels of the memory hierarchy by integer factors and reducing their execution time by as much as 60% and 33%, respectively.
    Citation
    Marin, Gabriel and Mellor-Crummey, John. "Understanding Unfulfilled Memory Reuse Potential in Scientific Applications." (2007) https://hdl.handle.net/1911/96362.
    Type
    Technical report
    Citable link to this page
    https://hdl.handle.net/1911/96362
    Rights
    You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
    Metadata
    Show full item record
    Collections
    • Computer Science Technical Reports [245]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map