• FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electron correlation in solids via density embedding theory

    Thumbnail
    Name:
    Electron-correlation-in-solids ...
    Size:
    404.2Kb
    Format:
    PDF
    View/Open
    Author
    Bulik, Ireneusz W.
    Chen, Weibing
    Scuseria, Gustavo E.
    Date
    2014
    Citation
    Bulik, Ireneusz W., Chen, Weibing and Scuseria, Gustavo E.. "Electron correlation in solids via density embedding theory." The Journal of Chemical Physics, 141, no. 5 (2014) http://dx.doi.org/10.1063/1.4891861.
    Published Version
    http://dx.doi.org/10.1063/1.4891861
    Abstract
    Density matrix embeddingᅠtheoryᅠ[G. Knizia and G. K.-L. Chan,ᅠPhys. Rev. Lett.109, 186404 (2012)] and density embeddingᅠtheoryᅠ[I. W. Bulik, G. E. Scuseria, and J. Dukelsky,ᅠPhys. Rev. Bᅠ89, 035140 (2014)] have recently been introduced for model lattice Hamiltonians and molecular systems. In the present work, the formalism is extended to theᅠab initioᅠdescription of infinite systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and demonstrated in cases of 1, 2, and 3 dimensions, usingᅠcoupled clusterᅠtheoryᅠas the impurity solver. Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The current approach yields results comparable toᅠcoupled clusterᅠcalculations of infinite systems even when using a single unit cell as the fragment. Theᅠtheoryᅠis formulated in the basis of Wannier functions but it does not require separate localization of unoccupied bands. The embedding scheme presented here is a promising way of employing highly accurate electronic structure methods for extended systems at a fraction of their original computational cost.
    Type
    Journal article
    Citable link to this page
    http://hdl.handle.net/1911/94384
    Metadata
    Show full item record
    Collections
    • Chemistry Publications [403]
    • Faculty Publications [2827]
    • Physics and Astronomy Publications [955]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892