Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging

    Thumbnail
    Name:
    spheroid-toxicity-assay.pdf
    Size:
    1.409Mb
    Format:
    PDF
    View/Open
    Author
    Tseng, Hubert; Gage, Jacob A.; Shen, Tsaiwei; Haisler, William L.; Neeley, Shane K.; More... Shiao, Sue; Chen, Jianbo; Desai, Pujan K.; Liao, Angela; Hebel, Chris; Raphael, Robert M.; Becker, Jeanne L.; Souza, Glauco R. Less...
    Date
    2015
    Abstract
    An ongoing challenge in biomedical research is the search for simple, yet robust assays using 3D cell cultures for toxicity screening. This study addresses that challenge with a novel spheroid assay, wherein spheroids, formed by magnetic 3D bioprinting, contract immediately as cells rearrange and compact the spheroid in relation to viability and cytoskeletal organization. Thus, spheroid size can be used as a simple metric for toxicity. The goal of this study was to validate spheroid contraction as a cytotoxic endpoint using 3T3 fibroblasts in response to 5 toxic compounds (all-trans retinoic acid, dexamethasone, doxorubicin, 5′-fluorouracil, forskolin), sodium dodecyl sulfate (+control), and penicillin-G (−control). Real-time imaging was performed with a mobile device to increase throughput and efficiency. All compounds but penicillin-G significantly slowed contraction in a dose-dependent manner (Z’ = 0.88). Cells in 3D were more resistant to toxicity than cells in 2D, whose toxicity was measured by the MTT assay. Fluorescent staining and gene expression profiling of spheroids confirmed these findings. The results of this study validate spheroid contraction within this assay as an easy, biologically relevant endpoint for high-throughput compound screening in representative 3D environments.
    Citation
    Tseng, Hubert, Gage, Jacob A., Shen, Tsaiwei, et al.. "A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging." Scientific Reports, 5, (2015) Springer Nature: http://dx.doi.org/10.1038/srep13987.
    Published Version
    http://dx.doi.org/10.1038/srep13987
    Type
    Journal article
    Publisher
    Springer Nature
    Citable link to this page
    https://hdl.handle.net/1911/94234
    Rights
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the articleメs Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.
    Link to License
    https://creativecommons.org/licenses/by/4.0/
    Metadata
    Show full item record
    Collections
    • Bioengineering Publications [632]
    • Faculty Publications [4990]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map