Show simple item record

dc.contributor.authorLam, Johnny
Clark, Elisa C.
Fong, Eliza L.S.
Lee, Esther J.
Lu, Steven
Tabata, Yasuhiko
Mikos, Antonios G.
dc.date.accessioned 2017-05-09T20:16:06Z
dc.date.available 2017-05-09T20:16:06Z
dc.date.issued 2016
dc.identifier.citation Lam, Johnny, Clark, Elisa C., Fong, Eliza L.S., et al.. "Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(l-Lysine) for applications in cartilage tissue engineering." Biomaterials, 83, (2016) Elsevier: 332-346. https://doi.org/10.1016/j.biomaterials.2016.01.020.
dc.identifier.urihttps://hdl.handle.net/1911/94214
dc.description.abstract To address the lack of reliable long-term solutions for cartilage injuries, strategies in tissue engineering are beginning to leverage developmental processes to spur tissue regeneration. This study focuses on the use of poly(l-lysine) (PLL), previously shown to up-regulate mesenchymal condensation during developmental skeletogenesis inᅠvitro, as an early chondrogenic stimulant of mesenchymal stem cells (MSCs). We characterized the effect of PLL incorporation on the swelling and degradation of oligo(poly(ethylene) glycol) fumarate) (OPF)-based hydrogels as functions of PLL molecular weight and dosage. Furthermore, we investigated the effect of PLL incorporation on the chondrogenic gene expression of hydrogel-encapsulated MSCs. The incorporation of PLL resulted in early enhancements of type II collagen and aggrecan gene expression and type II/type I collagen expression ratios when compared to blank controls. The presentation of PLL to MSCs encapsulated in OPF hydrogels also enhanced N-cadherin gene expression under certain culture conditions, suggesting that PLL may induce the expression of condensation markers in synthetic hydrogel systems. In summary, PLL can function as an inductive factor that primes the cellular microenvironment for early chondrogenic gene expression but may require additional biochemical factors for the generation of fully functional chondrocytes.
dc.language.iso eng
dc.publisher Elsevier
dc.rights This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.
dc.title Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(l-Lysine) for applications in cartilage tissue engineering
dc.type Journal article
dc.citation.journalTitle Biomaterials
dc.subject.keywordhydrogel
poly(L-lysine)
mesenchymal stem cells
condensation
chondrogenic differentiation
cartilage tissue engineering
dc.citation.volumeNumber 83
dc.type.dcmi Text
dc.identifier.doihttps://doi.org/10.1016/j.biomaterials.2016.01.020
dc.identifier.pmcid PMC4754156
dc.identifier.pmid 26799859
dc.type.publication post-print
dc.citation.firstpage 332
dc.citation.lastpage 346


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record