Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Second-order resummed thermodynamic perturbation theory for central-force associating potential: Multi-patch colloidal models

    Thumbnail
    Name:
    Second-order.pdf
    Size:
    315.8Kb
    Format:
    PDF
    View/Open
    Author
    Kalyuzhnyi, Y.V.; Marshall, B.D.; Chapman, W.G.; Cummings, P.T.
    Date
    2013
    Abstract
    We propose a second-order version of the resummed thermodynamic perturbation theory for patchy colloidal models with arbitrary number of multiply bondable patches. The model is represented by the hard-sphere fluid system with several attractive patches on the surface and resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. The theory represents an extension of the earlier proposed first order resummed thermodynamic perturbation theory for central force associating potential and takes into account formation of the rings of the particles. In the limiting case of singly bondable patches (total blockage), the theory reduces to Wertheim thermodynamic perturbation theory for associating fluids. Closed-form expressions for the Helmholtz free energy, pressure, internal energy, and chemical potential of the model with an arbitrary number of equivalent doubly bondable patches are derived. Predictions of the theory for the model with two patches appears to be in a very good agreement with predictions of new NVT and NPT Monte Carlo simulations, including the region of strong association.
    Citation
    Kalyuzhnyi, Y.V., Marshall, B.D., Chapman, W.G., et al.. "Second-order resummed thermodynamic perturbation theory for central-force associating potential: Multi-patch colloidal models." The Journal of Chemical Physics, 139, no. 4 (2013) American Institute of Physics: https://doi.org/10.1063/1.4816128.
    Published Version
    https://doi.org/10.1063/1.4816128
    Type
    Journal article
    Publisher
    American Institute of Physics
    Citable link to this page
    https://hdl.handle.net/1911/94163
    Rights
    Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
    Metadata
    Show full item record
    Collections
    • Chemical and Biomolecular Engineering Publications [253]
    • Faculty Publications [4988]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map