Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Projected Hartree–Fock theory

    Thumbnail
    Name:
    Hartree–FockTheory.pdf
    Size:
    392.8Kb
    Format:
    PDF
    View/Open
    Author
    Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Tsuchimochi, Takashi; Scuseria, Gustavo E.
    Date
    2012
    Abstract
    Projected Hartree–Fock (PHF) theory has a long history in quantum chemistry. PHF is here understood as the variational determination of an N-electron broken symmetry Slater determinant that minimizes the energy of a projected state with the correct quantum numbers. The method was actively pursued for several decades but seems to have been abandoned. We here derive and implement a “variation after projection” PHF theory using techniques different from those previously employed in quantum chemistry. Our PHF methodology has modest mean-field computational cost, yields relatively simple expressions, can be applied to both collinear and non-collinear spin cases, and can be used in conjunction with deliberate symmetry breaking and restoration of other molecular symmetries like complex conjugation and point group. We present several benchmark applications to dissociation curves and singlet-triplet energy splittings, showing that the resulting PHF wavefunctions are of high quality multireference character. We also provide numerical evidence that in the thermodynamic limit, the energy in PHF is not lower than that of broken-symmetry HF, a simple consequence of the lack of size consistency and extensivity of PHF.
    Citation
    Jiménez-Hoyos, Carlos A., Henderson, Thomas M., Tsuchimochi, Takashi, et al.. "Projected Hartree–Fock theory." The Journal of Chemical Physics, 136, no. 16 (2012) AIP Publishing LLC: https://doi.org/10.1063/1.4705280.
    Published Version
    https://doi.org/10.1063/1.4705280
    Type
    Journal article
    Publisher
    AIP Publishing LLC
    Citable link to this page
    https://hdl.handle.net/1911/94130
    Rights
    Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
    Metadata
    Show full item record
    Collections
    • Chemistry Publications [636]
    • Faculty Publications [4990]
    • Physics and Astronomy Publications [1771]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map