Show simple item record

dc.contributor.authorChan, Jesse
Warburton, T.
dc.date.accessioned 2017-02-23T16:13:25Z
dc.date.available 2017-02-23T16:13:25Z
dc.date.issued 2016
dc.identifier.urihttp://hdl.handle.net/1911/93976
dc.description.abstract We introduce a Bernstein--Bezier basis for the pyramid, whose restriction to the face reduces to the Bernstein--Bezier basis on the triangle or quadrilateral. The basis satisfies the standard positivity and partition of unity properties common to Bernstein polynomials and spans the same space as nonpolynomial pyramid bases in the literature. Procedures for differentiation and integration of these basis functions are also discussed.
dc.language.iso eng
dc.title A short note on a Bernstein-Bezier basis for the pyramid
dc.type Journal article
dc.citation.journalTitle SIAM Journal on Scientific Computing
dc.citation.volumeNumber 38
dc.citation.issueNumber 4
dc.contributor.publisher Society for Industrial and Applied Mathematics
dc.type.dcmi Text
dc.identifier.doihttp://dx.doi.org/10.1137/15M1036397
dc.type.publication post-print
dc.citation.firstpage A2172
local.sword.agent Converis
dc.citation.articleNumber A2162
dc.identifier.citation Chan, Jesse and Warburton, T.. "A short note on a Bernstein-Bezier basis for the pyramid." SIAM Journal on Scientific Computing, 38, no. 4 (2016) A2172. http://dx.doi.org/10.1137/15M1036397.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record