Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Transferable Model for Chromosome Architecture

    Thumbnail
    Name:
    2016-DiPierro.pdf
    Size:
    3.481Mb
    Format:
    PDF
    View/Open
    Author
    Di Pierro, M.; Zhang, B.; Lieberman, Aiden E.; Wolynes, P.G.; Onuchic J.N.
    Date
    2016
    Abstract
    In vivo, the human genome folds into a characteristic ensemble of 3D structures. The mechanism driving the folding process remains unknown. We report a theoretical model for chromatin (Minimal Chromatin Model) that explains the folding of interphase chromosomes and generates chromosome conformations consistent with experimental data. The energy landscape of the model was derived by using the maximum entropy principle and relies on two experimentally derived inputs: a classification of loci into chromatin types and a catalog of the positions of chromatin loops. First, we trained our energy function using the Hi-C contact map of chromosome 10 from human GM12878 lymphoblastoid cells. Then, we used the model to perform molecular dynamics simulations producing an ensemble of 3D structures for all GM12878 autosomes. Finally, we used these 3D structures to generate contact maps. We found that simulated contact maps closely agree with experimental results for all GM12878 autosomes. The ensemble of structures resulting from these simulations exhibited unknotted chromosomes, phase separation of chromatin types, and a tendency for open chromatin to lie at the periphery of chromosome territories.
    Citation
    Di Pierro, M., Zhang, B., Lieberman, Aiden E., et al.. "A Transferable Model for Chromosome Architecture." Proceedings of the National Academy of Sciences, (2016) National Academy of Sciences: http://dx.doi.org/10.1073/pnas.1613607113.
    Published Version
    http://dx.doi.org/10.1073/pnas.1613607113
    Type
    Journal article
    Publisher
    National Academy of Sciences
    Citable link to this page
    https://hdl.handle.net/1911/93958
    Rights
    Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
    Metadata
    Show full item record
    Collections
    • BioSciences Publications [365]
    • Chemistry Publications [636]
    • Faculty Publications [4990]
    • Physics and Astronomy Publications [1771]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map