Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Individual and combined effects of two types of phenological shifts on predator–prey interactions

    Thumbnail
    Name:
    Rasmussen_et_al-2016-Ecology.pdf
    Size:
    92.91Kb
    Format:
    PDF
    View/Open
    Author
    Rasmussen, Nick L.; Rudolf, Volker H.W.
    Date
    2016
    Abstract
    Timing of phenological events varies among years with natural variation in environmental conditions and is also shifting in response to climate change. These phenological shifts likely have many effects on species interactions. Most research on the ecological consequences of phenological shifts has focused on variation in simple metrics such as phenological firsts. However, for a population, a phenological event exhibits a temporal distribution with many attributes that can vary (e.g., mean, variance, skewness), each of which likely has distinct effects on interactions. In this study, we manipulated two attributes of the phenological distribution of a prey species to determine their individual and combined effects on predatorヨprey interactions. Specifically, we studied how shifts in the mean and variation around the mean (i.e., synchrony) of hatching by tadpoles (Hyla cinerea) affected interactions with predatory dragonfly naiads (Tramea carolina). At the end of larval development, we quantified survival and growth of predator and prey. We found that both types of shifts altered demographic rates of the prey; that the effects of synchrony shifts, though rarely studied, were at least as strong as those due to mean shifts; and that the combined effects of shifts in synchrony and mean were additive rather than synergistic. By dissecting the roles of two types of shifts, this study represents a significant step toward a comprehensive understanding of the complex effects of phenological shifts on species interactions. Embracing this complexity is critical for predicting how climate change will alter community dynamics.
    Citation
    Rasmussen, Nick L. and Rudolf, Volker H.W.. "Individual and combined effects of two types of phenological shifts on predator–prey interactions." Ecology, 97, no. 12 (2016) Ecological Society of America: 3414-3421. http://dx.doi.org/10.1002/ecy.1578.
    Published Version
    http://dx.doi.org/10.1002/ecy.1578
    Type
    Journal article
    Publisher
    Ecological Society of America
    Citable link to this page
    https://hdl.handle.net/1911/93809
    Rights
    Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
    Metadata
    Show full item record
    Collections
    • EEB Faculty Publications [67]
    • Faculty Publications [4990]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map