Show simple item record

dc.contributor.authorZeng, Yongchao
Ma, Kun
Farajzadeh, Rouhi
Puerto, Maura
Biswal, Sibani L.
Hirasaki, George J.
dc.date.accessioned 2016-08-30T20:50:15Z
dc.date.available 2016-08-30T20:50:15Z
dc.date.issued 2016
dc.identifier.citation Zeng, Yongchao, Ma, Kun, Farajzadeh, Rouhi, et al.. "Effect of Surfactant Partitioning Between Gaseous Phase and Aqueous Phase onᅠCO2ᅠFoam Transport for Enhanced Oil Recovery." Transport in Porous Media, 114, no. 3 (2016) Springer: 777-793. http://dx.doi.org/10.1007/s11242-016-0743-6.
dc.identifier.urihttps://hdl.handle.net/1911/91361
dc.description.abstract CO2 flood is one of the most successful and promising enhanced oil recovery technologies. However the displacement is limited by viscous fingering, gravity segregation and reservoir heterogeneity. Foaming the CO2 and brine with a tailored surfactant can simultaneously address these three problems and improve the recovery efficiency. Commonly chosen surfactants as foaming agents are either anionic or cationic in class. These charged surfactants are insoluble in either CO2 gas phase or supercritical phase and can only be injected with water. However, some novel nonionic or switchable surfactants are CO2 soluble, thus making it possible to be injected with the CO2 phase. Since surfactant could be present in both CO2 and aqueous phases, it is important to understand how the surfactant partition coefficient influences foam transport in porous media. Thus, a 1-D foam simulator embedded with STARS foam model is developed. All test results, from different cases studied, have demonstrated that when surfactant partitions approximately equally between gaseous phase and aqueous phase, foam favors oil displacement in regard with apparent viscosity and foam propagation speed. The test results from the 1-D simulation are compared with the fractional flow theory analysis reported in literature.
dc.language.iso eng
dc.publisher Springer
dc.rights This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Springer.
dc.title Effect of Surfactant Partitioning Between Gaseous Phase and Aqueous Phase onᅠCO2ᅠFoam Transport for Enhanced Oil Recovery
dc.type Journal article
dc.citation.journalTitle Transport in Porous Media
dc.subject.keywordnonionic surfactant
partition coefficient
CO2
foam
gas breakthrough
mobility control
Enhanced Oil Recovery (EOR)
IMPES
Fractional Flow Theory
dc.citation.volumeNumber 114
dc.citation.issueNumber 3
dc.type.dcmi Text
dc.identifier.doihttp://dx.doi.org/10.1007/s11242-016-0743-6
dc.type.publication post-print
dc.citation.firstpage 777
dc.citation.lastpage 793


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record