Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear Nanophotonic Systems for Harmonic Generation, Parametric Amplification, Optical Processing and Single-Molecule Detection

    Thumbnail
    Name:
    ZHANG-DOCUMENT-2014.pdf
    Size:
    6.854Mb
    Format:
    PDF
    View/Open
    Author
    Zhang, Yu
    Date
    2015-02-19
    Degree
    Doctor of Philosophy
    Abstract
    Metallic nanoparticles support collective oscillations of conduction-band electrons, in response to light incidences. Such phenomenon is called localized surface plasmons, which confine large electromagnetic fields in sub-wavelength dimensions, enabling the light manipulation at the nanoscale. Plasmonic nanoparticles have established many promising applications, such as infrared photodetections, photothermal generation steam, chemical photocatalysis, cancer therapy and surface-enhanced spectroscopy. More interesting, plasmonic nanostructures could generate strong nonlinear-optical effects by relatively low excitation powers, and have been widely used in different processes like second-harmonic generations (SHG), difference-frequency generation (DFG), third-harmonic generation (THG), optical four-wave mixing (FWM) and surface-enhanced Raman scattering (SERS). This thesis will focused on two types of second-order and two types of third-order nonlinear-optical processes, enhanced by artificial plasmonic nanostructures. Firstly, the second-harmonic generation on a single nanocup is studied, and the signal is demonstrated to have increasing intensity as the 3D symmetry of the nanocup is reduced. Then, optical four-wave mixing is generated on a plasmonic nanocluster which supports a coherent oscillation of two Fano resonances. The electric fields from both Fano resonances add coherently resulting in strong fields and correspondingly large signals. This nanocluster has a large color-conversion efficiency, and could be used for building blocks of optical processors that convert two input colors into a third color. Later, one specific application of four-wave mixing, the coherent anti-Stokes Raman scattering (CARS) is studied. By exploiting the unique light harvesting properties of a Fano resonance of a specially designed nano-quadrumer, the surface-enhanced CARS (SECARS) technique amplifies the Raman signals of molecules on the quadrumer by about 100 billion times. This enables the accurate identification of a single molecule with less than 20 atoms. Finally, a plasmon-enhanced optical parametric amplifier (OPA) is designed: A BaTiO3 nanosphere is used as the nonlinear OPA medium; A nanoshell wrapping this nanosphere is used as a triply resonant cavity for all the pump, signal and idler beams; The generated idler beam has a wide tuning range in the near-infrared by changing the delay between the narrowband pump beam and broadband signal beam. This surface-plasmon-enhanced OPA could be an efficient light source working in the infrared regime, with large wavelength tunabilities and nanoscale dimensions easily integrated into the next-generation optoelectronic devices.
    Keyword
    Nonlinear Optics; Nonlinear Plasmonics; Second-harmonic Generation; Four-wave Mixing; Optical Parametric Amplification; More... Coherent Raman Less...
    Citation
    Zhang, Yu. "Nonlinear Nanophotonic Systems for Harmonic Generation, Parametric Amplification, Optical Processing and Single-Molecule Detection." (2015) Diss., Rice University. https://hdl.handle.net/1911/90374.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [13403]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map