Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hypersonic power-law bodies of maximum lift-to-drag ratio

    Thumbnail
    Name:
    RICE0253.pdf
    Size:
    3.883Mb
    Format:
    PDF
    View/Open
    Author
    Huang, Ho-Yi
    Date
    1966
    Advisor
    Miele, Angelo
    Degree
    Master of Science
    Abstract
    The problem of maximizing the lift-to-drag ratio of a slender, flat-top hypersonic body is investigated under the assumptions that the pressure distribution is Newtonian and the skin-friction coefficient is constant. Direct methods are employed, and the analysis is confined to the class of bodies whose transversal contour is semicircular and whose longitudinal contour is a power law. First, unconstrained configurations are considered, and the combination of power law exponent and the thickness ratio maximizing the lift-to-drag ratio is determined. It is found that the maximum lift-to-drag ratio LID = 0.360 Cf1/3 and corresponds to a conical configuration of thickness ratio t/l = 1.18 Cf1/3, where Cf is the skin-friction coefficient. Next, constrained configurations are considered, that is, conditions are imposed on the length, the thickness, the volume, the wetted area, and the center of pressure. For each combination of constraints, an appropriate similarity parameter is introduced, and the optimum power law exponent, thickness ratio, and the lift-to-drag ratio are determined as functions of the similarity parameter.
    Citation
    Huang, Ho-Yi. "Hypersonic power-law bodies of maximum lift-to-drag ratio." (1966) Master’s Thesis, Rice University. https://hdl.handle.net/1911/89216.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [13409]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map