Show simple item record

dc.contributor.advisor Scott, David W.
dc.creatorRamos, Jaime J
dc.date.accessioned 2016-02-04T21:25:10Z
dc.date.available 2016-02-04T21:25:10Z
dc.date.created 2014-12
dc.date.issued 2014-08-18
dc.date.submitted December 2014
dc.identifier.citation Ramos, Jaime J. "Robust Methods for Forecast Aggregation." (2014) Diss., Rice University. https://hdl.handle.net/1911/88362.
dc.identifier.urihttps://hdl.handle.net/1911/88362
dc.description.abstract This study introduces a new forecast aggregation technique. Adding to the well- known difficulties and uncertainty involved in the forecasting process, the aggregation of hundreds or thousands of forecasters’ opinions and expert predictions on social, economical and political matters makes the process even more difficult. Simple quan- titative data analytics, least squares regression, and maximum likelihood estimations are not sufficient to handle the dynamics of such data, which includes outliers, clusters of opinions, extreme values, and abrupt change of mind and predictions of forecasters influenced by news, recent events, collaboration or feedback from experts. The meth- ods developed in this work are based on a particular minimum-distance technique called L2E, which is popular in nonparametric density estimation that makes the aggregation robust to clusters of opinions and dramatic changes. Variance-stabilizing transformations are introduced to attain homoscedasticity for L2E regression improv- ing parameter estimation and overall aggregation. New normalization approaches are proposed to use when the aggregated values are unsuitable probabilities, such as values ∈/ [0, 1] and/or do not add to 1. Finally, data visualization techniques and graphical user interfaces (GUIs) are discussed as aid to decision makers in order to understand “single” aggregated forecast values, obtained from the original big data set analyzed, and the trend of such aggregated forecasts over the forecasting period.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.subjectrobust forecast aggregation
robust normalization
forecast
aggregation
L2E
dc.title Robust Methods for Forecast Aggregation
dc.contributor.committeeMember Lane, David
dc.contributor.committeeMember Thompson, James R
dc.date.updated 2016-02-04T21:25:10Z
dc.type.genre Thesis
dc.type.material Text
thesis.degree.department Statistics
thesis.degree.discipline Engineering
thesis.degree.grantor Rice University
thesis.degree.level Doctoral
thesis.degree.name Doctor of Philosophy


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record