Integrating DNA strand-displacement circuitry with DNA tile self-assembly
Author
Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik
Date
2013Abstract
DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures.
Citation
Published Version
Type
Journal article
Publisher
Citable link to this page
https://hdl.handle.net/1911/88317Rights
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.Link to License
http://creativecommons.org/licenses/by-nc-nd/3.0/Metadata
Show full item recordCollections
- Bioengineering Publications [677]
- Faculty Publications [5397]