Show simple item record

dc.contributor.authorWahlen-Strothman, Jacob M.
Jiménez-Hoyos, Carlos A.
Henderson, Thomas M.
Scuseria, Gustavo E.
dc.date.accessioned 2016-01-29T21:44:39Z
dc.date.available 2016-01-29T21:44:39Z
dc.date.issued 2015
dc.identifier.citation Wahlen-Strothman, Jacob M., Jiménez-Hoyos, Carlos A., Henderson, Thomas M., et al.. "Lie algebraic similarity transformed Hamiltonians for lattice model systems." Physical Review B, 91, no. 4 (2015) American Physical Society: 041114(R). http://dx.doi.org/10.1103/PhysRevB.91.041114.
dc.identifier.urihttps://hdl.handle.net/1911/88278
dc.description.abstract We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni↑ni↓, and two-site products of density (ni↑+ni↓) and spin (ni↑−ni↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.
dc.language.iso eng
dc.publisher American Physical Society
dc.rights Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.title Lie algebraic similarity transformed Hamiltonians for lattice model systems
dc.type Journal article
dc.contributor.funder National Science Foundation
dc.contributor.funder Welch Foundation
dc.citation.journalTitle Physical Review B
dc.citation.volumeNumber 91
dc.citation.issueNumber 4
dc.type.dcmi Text
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevB.91.041114
dc.identifier.grantID CHE-1110884 (National Science Foundation)
dc.identifier.grantID C-0036 (Welch Foundation)
dc.type.publication publisher version
dc.citation.firstpage 041114(R)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record