Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vibrational Energy Dissipation in Condensed Phases Investigated by Multiple Modes Multiple Dimensional Vibrational Spectroscopy

    Thumbnail
    Name:
    LI-DOCUMENT-2014.pdf
    Size:
    7.777Mb
    Format:
    PDF
    View/Open
    Author
    Li, Jiebo
    Date
    2014-08-12
    Advisor
    Zheng, Junrong
    Degree
    Doctor of Philosophy
    Abstract
    The methodology of ultrafast multiple-mode multiple-dimensional vibrational spectroscopy has been developed and applied to investigate the vibrational energy dissipation in condensed phase. In particular, experiments have been focused on the studies of vibrational energy relaxation and mode-specific vibrational energy transfer in both heterogeneous and homogeneous phases. This thesis presents two distinctive vibrational energy dissipation pathways for molecules absorbed on the typical heterogeneous metal nanoparticle surfaces. On 2-10 nm platinum and palladium nanoparticles, it was found that the electronic excitation-mediated vibrational energy dissipation (~2ps) was at least one order magnitude faster than direct vibration-vibration relaxation (50ps). This electronic energy damping is accompanied by low frequency thermal energy generation on metallic surfaces. This electronic mediated pathway dominates until the electronic property of the particle is altered by reducing size to ~1nm. The energy relaxation pathway also could be altered by changing the chemical nature of the metallic nanoparticle. These findings are of fundamental importance to ultimately understanding the nature of heterogeneous catalysis. This thesis also demonstrates mode-specific vibrational energy exchange between ions in electrolyte solution. (i) Interactions between model molecules representing different building-blocks of proteins and thiocyanate anions in aqueous solutions are studied. The binding affinity between the thiocyanate anions and the charged amino acid residues is about 20 times bigger than that between water molecules and the amino acids, and about 5~10 times larger than that between the anions and neutral backbone amide groups. (ii) Ion segregation was also investigated by mode-specific vibrational energy exchange between thiocyanate anions. In aqueous solutions, it was found that “structure maker” ions, such as F-, would stay in the “water phase” and thereby promote aggregation of the SCN- in an “ionic phase”. “Structure breaker” ions, such as I-, would break the ionic SCN- phase. (iii) Mediated by combination band, vibrational energy flow down from thiocyanate to ammonium was used to confirm that ion pair is formed between ammonium and thiocyanate in aqueous solutions. Investigations of these microscopic structures and dynamics of aqueous salt solutions experiments will add depth to our understanding of general macroscopic properties of electrolyte solutions.
    Keyword
    Energy transfer; Ultrafast Infrared Spectroscopy
    Citation
    Li, Jiebo. "Vibrational Energy Dissipation in Condensed Phases Investigated by Multiple Modes Multiple Dimensional Vibrational Spectroscopy." (2014) Diss., Rice University. https://hdl.handle.net/1911/88085.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [14030]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map