dc.contributor.author | García-López, Víctor Chiang, Pinn-Tsong Chen, Fang Ruan, Gedeng Martí, Angel A. Kolomeisky, Anatoly B. Wang, Gufeng Tour, James M.
|
dc.date.accessioned |
2016-01-14T20:01:03Z
|
dc.date.available |
2016-01-14T20:01:03Z
|
dc.date.issued |
2015
|
dc.identifier.citation |
García-López, Víctor, Chiang, Pinn-Tsong, Chen, Fang, et al.. "Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring." Nano Letters, 15, no. 12 (2015) America Chemical Society: 8229-8239. http://dx.doi.org/10.1021/acs.nanolett.5b03764.
|
dc.identifier.uri | https://hdl.handle.net/1911/87817 |
dc.description.abstract |
Unimolecular submersible nanomachines (USNs) bearing light-driven motors and fluorophores are synthesized. NMR experiments demonstrate that the rotation of the motor is not quenched by the fluorophore and that the motor behaves in the same manner as the corresponding motor without attached fluorophores. No photo or thermal decomposition is observed. Through careful design of control molecules with no motor and with a slow motor, we found using single molecule fluorescence correlation spectroscopy that only the molecules with fast rotating speed (MHz range) show an enhancement in diffusion by 26% when the motor is fully activated by UV light. This suggests that the USN molecules give ?9 nm steps upon each motor actuation. A non-unidirectional rotating motor also results in a smaller, 10%, increase in diffusion. This study gives new insight into the light actuation of motorized molecules in solution.
|
dc.language.iso |
eng
|
dc.publisher |
America Chemical Society
|
dc.rights |
This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society.
|
dc.title |
Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring
|
dc.type |
Journal article
|
dc.contributor.funder |
National Science Foundation
|
dc.contributor.funder |
National Institutes of Health
|
dc.contributor.funder |
Welch Foundation
|
dc.citation.journalTitle |
Nano Letters
|
dc.contributor.org |
Center for Theoretical Biological Physics
|
dc.subject.keyword | unimolecular submersible nanomachines light-driven motor diffusion coefficient fluorophores
|
dc.citation.volumeNumber |
15
|
dc.citation.issueNumber |
12
|
dc.type.dcmi |
Text
|
dc.identifier.doi | http://dx.doi.org/10.1021/acs.nanolett.5b03764 |
dc.identifier.grantID |
CHE-1360979 (National Science Foundation)
|
dc.identifier.grantID |
1R01GM094489-01 (National Institutes of Health)
|
dc.identifier.grantID |
C-1559 (Welch Foundation)
|
dc.identifier.grantID |
CHE-1007483 (National Science Foundation)
|
dc.type.publication |
post-print
|
dc.citation.firstpage |
8229
|
dc.citation.lastpage |
8239
|