Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Amniotic Fluid-derived Stem Cell Isolation, Maintenance, and Differentiation for Cardiac Tissue Engineering

    Thumbnail
    Name:
    CONNELL-DOCUMENT-2014.pdf
    Size:
    11.61Mb
    Format:
    PDF
    View/Open
    Author
    Connell, Jennifer Petsche
    Date
    2014-12-05
    Advisor
    Jacot, Jeffrey G
    Degree
    Doctor of Philosophy
    Abstract
    Cardiac tissue engineering is limited by the lack of a clinically relevant cell source. Amniotic fluid-derived stem cells (AFSC) are broadly multipotent and proliferate rapidly, making them a promising cell source for tissue engineering applications. AFSC can also be utilized autologously for congenital heart defects, the most severe of which are identified in utero, allowing for ample time to isolate and expand the cells to prepare a patch for implantation shortly after birth. This thesis focused on the characterization of AFSC and their potential to differentiate towards a cardiac lineage. For characterization studies, stem cells from amniotic fluid were sorted for c-kit protein expression at the first passage or left unfractionated and then expanded in 5 different media. Protein and gene expression of markers common to pluripotent stem cells were analyzed from passages 2 through 6, and differentiation capacity of the stem cells towards osteogenic, endothelial, and neurogenic lineages were compared at passages 5 and 6. The unfractionated AFSC maintained higher expression of stem cell markers but displayed a significant decrease in those markers at passage 6. Correspondingly, indicators of the lineages of interest were higher following differentiation at passage 5 compared to passage 6. To investigate the cardiac tissue engineering potential of AFSC, cells were differentiated in indirect co- cultures with neonatal rat ventricular myocytes (NRVM) and under a small molecule- based directed differentiation regime. NRVM induce AFSC to form functional gap junctions following indirect co-culture. AFSC undergoing directed differentiation also localized gap junctions to cell membranes and additionally demonstrated an up regulation in cardiac transcription factors and sarcomere proteins. In both co-culture and small molecule-based differentiation methods, however, no organized sarcomeres or spontaneously beating cells were observed. While AFSC hold great potential for regenerative medicine applications, particularly in congenital defect repair, functional cardiomyocytes have not yet been obtained, and it is likely that additional cues beyond chemical signaling and growth factors will be required. Overall, these studies led to a greater understanding of the cardiac potential of AFSC and the effect of sorting and culture conditions on maintenance of stem cell properties in AFSC.
    Keyword
    amniotic fluid-derived stem cells; cardiac; tissue engineering; stem cells; differentiation
    Citation
    Connell, Jennifer Petsche. "Amniotic Fluid-derived Stem Cell Isolation, Maintenance, and Differentiation for Cardiac Tissue Engineering." (2014) Diss., Rice University. https://hdl.handle.net/1911/87756.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [13409]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map