Now showing items 1-4 of 4

  • Democracy in action: Quantization, saturation, and compressive sensing 

    Laska, Jason N. (2010)
    We explore and exploit a heretofore relatively unexplored hallmark of compressive sensing (CS), the fact that certain CS measurement systems are democratic, which means that each measurement carries roughly the same amount ...
  • Multiscale random projections for compressive classification 

    Duarte, Marco F.; Davenport, Mark A.; Wakin, Michael B.; Laska, Jason N.; Takhar, Dharmpal; Kelly, Kevin F.; Baraniuk, Richard G. (2007-09-01)
    We propose a framework for exploiting dimension-reducing random projections in detection and classification problems. Our approach is based on the generalized likelihood ratio test; in the case of image classification, ...
  • Single-pixel imaging via compressive sampling 

    Duarte, Marco F.; Davenport, Mark A.; Takhar, Dharmpal; Laska, Jason N.; Sun, Ting; Kelly, Kevin F.; Baraniuk, Richard G. (2008-03-01)
  • The smashed filter for compressive classification and target recognition 

    Davenport, Mark A.; Duarte, Marco F.; Wakin, Michael B.; Laska, Jason N.; Takhar, Dharmpal; Kelly, Kevin F.; Baraniuk, Richard G. (2007-01-01)
    The theory of compressive sensing (CS) enables the reconstruction of a sparse or compressible image or signal from a small set of linear, non-adaptive (even random) projections. However, in many applications, including ...