• FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deformation of Indian Ocean lithosphere: Evidence for a highly nonlinear rheological law

    Thumbnail
    Name:
    jgrb51134.pdf
    Size:
    4.733Mb
    Format:
    PDF
    View/Open
    Author
    Gordon, Richard G.
    Houseman, Gregory A.
    Date
    2015
    Citation
    Gordon, Richard G. and Houseman, Gregory A.. "Deformation of Indian Ocean lithosphere: Evidence for a highly nonlinear rheological law." Journal of Geophysical Research: Solid Earth, (2015) http://dx.doi.org/10.1002/2015JB011993.
    Published Version
    http://dx.doi.org/10.1002/2015JB011993
    Abstract
    The width of diffuse oceanic plate boundaries is determined by the rheology of oceanic lithosphere. Here we apply thin viscous sheet models, which have been successfully applied to deformation in several continental deforming zones, to investigate the deformation of oceanic lithosphere in the diffuse oceanic plate boundaries between the India, Capricorn, and Australia Plates. We apply kinematic boundary conditions based on the current motion between these plates. We neglect buoyancy forces due to plate thinning or thickening and assume that the thin viscous sheet has the same depth-integrated nonlinear viscosity coefficient everywhere. Our initial models have only one adjustable parameter, n, the power-law exponent, with n = 1, 3, 10, 30, and 100. The predicted width of the deforming zone decreases with increasing n, with n ≥ 30 explaining the observations. This n value is higher than has been estimated for continental lithosphere and suggests that more of the strength of oceanic lithosphere lies in layers deforming by faulting or by dislocation glide than for continental lithosphere. To obtain a stress field that better fits the distribution and type of earthquake focal mechanisms in the diffuse oceanic plate boundary, we add a second adjustable parameter, representing the effect of slab pull stretching the oceanic plate near the Sumatra Trench. We show that an average velocity increment on this boundary segment of 5 mm a−1 (relative to the average velocity of the India and Australia Plates) fits the observed distribution of fault types better than velocities of 3.3 mm a−1 or 10 mm a−1.
    Keyword
    rheology; Indian Ocean; oceanic lithosphere; diffuse plate boundaries; strain fields; More... Indo-Australian Plate Less...
    Type
    Journal article
    Citable link to this page
    http://hdl.handle.net/1911/80856
    Metadata
    Show full item record
    Collections
    • Earth Science Publications [121]
    • Faculty Publications [2827]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892