Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evolution of Glacially Derived Freshwater and Overpressure in the Massachusetts Shelf: An Integration of Geophysical and Numerical Methods

    Thumbnail
    Name:
    Siegel_Thesis12.pdf
    Size:
    8.271Mb
    Format:
    PDF
    View/Open
    Author
    Siegel, Jacob
    Date
    2013-10-24
    Advisor
    Dugan, Brandon
    Degree
    Doctor of Philosophy
    Abstract
    The continental shelf offshore Massachusetts, USA experienced repeated glaciations throughout the late Pleistocene that emplaced freshwater and generated overpressure in the shelf sediments that still remains offshore. To show this, I processed and interpreted high-resolution, multi-channel seismic data that was collected offshore Massachusetts to infer the glacial history and to incorporate the glacial history into numerical modeling. Interpretations of the seismic data reveal the shelf stratigraphy and the location of a late Pleistocene (Marine Oxygen Isotope Stage 12) ice sheet. The ice sheet extended 100 km farther onto the shelf compared to the Laurentide ice sheet during the Last Glacial Maximum (LGM). It also contained an ice stream that was likely sourced from the Gulf of Maine. I show that the late Pleistocene ice sheet influenced the shelf hydrogeology by generating overpressure and emplacing freshwater into the shelf sediments. Overpressure is modeled in 1D from high-resolution, full-waveform inversion p-wave velocities obtained from the seismic data and from a finite-difference fluid flow model that accounts for sedimentation and ice sheet loading. The results demonstrate how loading from the late Pleistocene ice sheet caused focused fluid flow that created localized zones of overpressure nearly 1-2 MPa in offshore sediments. Freshwater emplacement into shelf sediments is estimated with a finite-element, variable-density model of fluid flow and heat and solute transport that accounts for ice-sheet loading and sea-level change. The model helps explain how the late Pleistocene ice sheet emplaced nearly 100 km3 of freshwater into the sediments. Our results thus integrate seismic interpretations of ice sheet history with numerical techniques of fluid flow modeling to show how the past glacial history influenced the present freshwater distribution.
    Keyword
    Geophysics; Hydrogeology; Pleistocene; Glaciations
    Citation
    Siegel, Jacob. "Evolution of Glacially Derived Freshwater and Overpressure in the Massachusetts Shelf: An Integration of Geophysical and Numerical Methods." (2013) Diss., Rice University. http://hdl.handle.net/1911/77523.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [12052]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892