Show simple item record

dc.contributor.authorCarden, Russell L.
Embree, Mark
dc.date.accessioned 2013-07-11T15:05:47Z
dc.date.available 2013-07-11T15:05:47Z
dc.date.issued 2012
dc.identifier.citation Carden, Russell L. and Embree, Mark. "Ritz Value for Non-Hermitian Matrices." SIAM Journal on Matrix Analysis and Applications, 33, no. 4 (2012) Society for Industrial and Applied Mathematics: 1320-1338. http://dx.doi.org/10.1137/120872693.
dc.identifier.urihttps://hdl.handle.net/1911/71532
dc.description.abstract Rayleigh-Ritz eigenvalue estimates for Hermitian matrices obey Cauchy interlacing, which has helpful implications for theory, applications, and algorithms. In contrast, few results about the Ritz values of non-Hermitian matrices are known, beyond their containment within the numerical range. To show that such Ritz values enjoy considerable structure, we establish regions within the numerical range in which certain Ritz values of general matrices must be contained. To demonstrate that localization occurs even for extreme examples, we carefully analyze possible Ritz value combinations for a three-dimensional Jordan block.
dc.language.iso eng
dc.publisher Society for Industrial and Applied Mathematics
dc.rights Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.title Ritz Value for Non-Hermitian Matrices
dc.type Journal article
dc.contributor.funder National Science Foundation
dc.citation.journalTitle SIAM Journal on Matrix Analysis and Applications
dc.subject.keywordRitz values
numerical range
inverse field of values problem
dc.citation.volumeNumber 33
dc.citation.issueNumber 4
dc.embargo.terms none
dc.type.dcmi Text
dc.identifier.doihttp://dx.doi.org/10.1137/120872693
dc.identifier.grantID DMS-CAREER-0449973 (National Science Foundation )
dc.type.publication publisher version
dc.citation.firstpage 1320
dc.citation.lastpage 1338


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record