Show simple item record

dc.contributor.advisor Nordlander, Peter J.
dc.creatorSobhani Khakestar, Heidar
dc.date.accessioned 2013-03-08T00:38:58Z
dc.date.available 2013-03-08T00:38:58Z
dc.date.issued 2012
dc.identifier.urihttps://hdl.handle.net/1911/70445
dc.description.abstract Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high energy carrier rather than radiation. Photons coupled into metallic nanoantenna excite resonant plasmons, which can decay into energetic, hot electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. We design a device which the range of its potential applications is extremely diverse. As silicon based detector capable of detecting sub-band gap photons, this device could be used in photovoltaic devices to harvest solar energy. Plasmon generated hot electrons can be used in photocatalytic dissociation of H2 molecules at the room temperature as well. The hot electrons in their higher energy states can populate the antibonding orbital of H2 molecules adsorbed on the metal surface and thus trigger the H2 molecule dissociation. The goal is to demonstrate the high efficiency of metallic photocatalytic systems by detecting the formation of HD molecules from the individual dissociation of two isotopes, H2 and D2. At the end we introduce lightning rod effect in metallic nanostructures and investigated the relation between the geometry properties of micrometer rod antennas and the electromagnetic field enhancement induced due to the lightning rod effect. At long wavelength, metals behave like perfect equipotential conductors and all the field enhancement results from the drop of potentials across the junctions between individual nanoparticles. This phenomenon is called lightning rod effect. By designing proper geometry we were able to utilize this effect to obtain enough electromagnetic enhancements in MIR region of spectrum to observe SEIRA signals from few hemoglobin molecules. Our simulation shows that the field enhancement obtained from this antenna does not depend sensitively on wavelength which is another advantage for SEIRA spectroscopy. We offered an analytical model to explore the coupling between the hemoglobin molecules and the Efield. We used this model to study the location effect of the molecule on the reflection signal. This technique allows us to detect the vibrational mode of molecules such as Hemoglobin in the real time and study their changes when the molecules are exposed to different environmental circumstances.
dc.format.extent 152 p.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.subjectApplied sciences
Pure sciences
Photovoltaics
Nanophotonics
Light manipulation
Electrical engineering
Nanoscience
Nanotechnology
Optics
dc.title Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications
dc.identifier.digital SobhaniH1
dc.type.genre Thesis
dc.type.material Text
thesis.degree.department Electrical and Computer Engineering
thesis.degree.discipline Engineering
thesis.degree.grantor Rice University
thesis.degree.level Doctoral
thesis.degree.name Doctor of Philosophy
dc.identifier.citation Sobhani Khakestar, Heidar. "Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications." (2012) Diss., Rice University. https://hdl.handle.net/1911/70445.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record