Show simple item record

dc.contributor.advisor Gonzalez, Ramon
dc.creatorDellomonaco, Clementina
dc.date.accessioned 2013-03-08T00:33:17Z
dc.date.available 2013-03-08T00:33:17Z
dc.date.issued 2012
dc.identifier.urihttps://hdl.handle.net/1911/70225
dc.description.abstract Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of biofuels and biochemicals. While the carbohydrate portion of edible crops is currently used as the primary feedstock in the biological production of fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms have drawn the attention to FAs as an attractive alternative. However, microbial platforms to enable this were nearly absent. To this end, we engineered native and heterologous fermentative pathways in E. coli to enable the efficient synthesis of fuels and chemicals from FAs. The current de facto strategy for the synthesis of non-native products in model organisms is He terologous M etabolic E ngineering (HeME), which consists of recruiting foreign genes from native producers. However, the relative incompatibility of the heterologous pathways with the host metabolism may be considered a drawback. As an alternative approach, the HoME ( Ho mologous M etabolic E ngineering) strategy that we propose overcomes this limitation by harnessing the metabolic potential of the host strain. HoME aims at reconstructing heterologous pathways to enable biosynthesis of non-natural products by identifying and assembling native functional surrogates. Implementation of both HeME and HoME strategies in the context of fuels and chemicals biosynthesis has usually been directed to the conversion of feedstocks constituents into a specific product. However, we demonstrated a novel metabolic platform based on a functional reversal of the fatty acid catabolic pathway (β-oxidation) as a means of synthesizing a wide array of products with various chain lengths and functionalities.
dc.format.extent 221 p.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.subjectApplied sciences
Pure sciences
Biological sciences
Escherichia coli
Biofuels
Biochemicals
Fatty acid
Microbiology
Biochemistry
Chemical engineering
dc.title Novel approaches for the production of fuels and chemicals in Escherichia coli
dc.identifier.digital DellomonacoC
dc.type.genre Thesis
dc.type.material Text
thesis.degree.department Chemical and Biomolecular Engineering
thesis.degree.discipline Engineering
thesis.degree.grantor Rice University
thesis.degree.level Doctoral
thesis.degree.name Doctor of Philosophy
dc.identifier.citation Dellomonaco, Clementina. "Novel approaches for the production of fuels and chemicals in Escherichia coli." (2012) Diss., Rice University. https://hdl.handle.net/1911/70225.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record