Now showing items 1-4 of 4

    • Enhanced MRI relaxivity of aquated Gd3+ᅠions by carboxyphenylated water-dispersed graphene nanoribbons 

      Gizzatov, Ayrat; Keshishian, Vazrik; Guven, Adem; Dimiev, Ayrat M.; Qu, Feifei; Muthupillai, Raja; Decuzzi, Paolo; Bryant, Robert G.; Tour, James M.; Wilson, Lon J. (2014)
      The present study demonstrates that highly water-dispersed graphene nanoribbons dispersed by carboxyphenylated substituents and conjugated to aquated Gd3+ᅠions can serve as a high-performance contrast agent (CA) for ...
    • Enhanced MRI relaxivity of Gd3+-based contrast agents geometrically confined within porous nanoconstructs 

      Sethi, Richa; Ananta, Jeyarama S.; Karmonik, Christof; Zhong, Meng; Fung, Steve H.; Liu, Xuewu; Li, King; Ferrari, Mauro; Wilson, Lon J.; Decuzzi, Paolo (2012)
      Gadolinium chelates, which are currently approved for clinical MRI use, provide relaxivities well below their theoretical limit, and they also lack tissue specificity. Recently, the geometrical confinement of Gd3+-based ...
    • Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer 

      Gizzatov, Ayrat; Stigliano, Cinzia; Ananta, Jeyerama S.; Sethi, Richa; Xu, Rong; Guven, Adem; Ramirez, Maricela; Shen, Haifa; Sood, Anil; Ferrari, Mauro; Wilson, Lon J.; Liu, Xuewu; Decuzzi, Paolo (2014)
      Porous silicon has been used for the delivery of therapeutic and imaging agents in several biomedical applications. Here, mesoporous silicon nanoconstructs (SiMPs) with a discoidal shape and a sub-micrometer size (1,000 × ...
    • Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation 

      Gizzatov, Ayrat; Key, Jaehong; Aryal, Santosh; Ananta, Jeyarama; Cervadoro, Antonio; Palange, Anna Lisa; Fasano, Matteo; Stigliano, Cinzia; Zhong, Meng; Di Mascolo, Daniele; Guven, Adem; Chiavazzo, Eliodoro; Asinari, Pietro; Liu, Xuewu; Ferrari, Mauro; Wilson, Lon J.; Decuzzi, Paolo (2014)
      Iron oxide nanoparticles are formidable multifunctional systems capable of contrast enhancement in magnetic resonance imaging, guidance under remote fields, heat generation, and biodegradation. Yet, this potential is ...