Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Testing on the Curve: Nonlinear Analytical Redundancy for Fault Detection

    Thumbnail
    Name:
    2001ans_robotics[1].pdf
    Size:
    196.4Kb
    Format:
    PDF
    View/Open
    Author
    Leuschen, Martin L.; Cavallaro, Joseph R.; Walker, Ian D.
    Date
    2001-03-01
    Abstract
    One of the most important areas in the robotics industry is the development of robots capable of working in hazardous environments. Providing a high level of functionality in these arenas is important simply because humans cannot safely or cheaply work there. Our work focuses on a fault detection method known as analytical redundancy, or AR. AR is a model-based state-space technique that is theoretically guaranteed to derive the maximum number of independent tests of the consistency of sensor data with the system model and past control inputs. AR is only valid for linear sampled data systems. AR is a model-based technique, and is thus extremely sensitive to differences between the nominal model behavior and the actual system behavior. A system with strong nonlinear characteristics, such as a hydraulic servovalve, can be impossible to model properly in the linear domain, creating significant differences between the model and the system that will generate false error signals. In this paper we discuss the application to a hydraulic servovalve system of our novel rigorous nonlinear AR technique that maintains traditional linear AR's theoretical guarantee of the maximum possible number of independent tests in the nonlinear domain. This technique allows us to gain the benefits of AR testing for nonlinear systems with both continuous and sampled data.
    Citation
    M. L. Leuschen, J. R. Cavallaro and I. D. Walker, "Testing on the Curve: Nonlinear Analytical Redundancy for Fault Detection," pp. Session 22, Paper F131, 2001.
    Keyword
    Robotics; Hydraulic servovalve; Nonlinear systems
    Type
    Conference paper
    Publisher
    American Nuclear Society
    Citable link to this page
    https://hdl.handle.net/1911/64162
    Metadata
    Show full item record
    Collections
    • ECE Publications [1468]
    • Rice Wireless [268]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map