Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimizing network I/O virtualization through guest-driven scheduler bypass

    Thumbnail
    Name:
    1486559.PDF
    Size:
    2.006Mb
    Format:
    PDF
    View/Open
    Author
    Crompton, Joanna
    Date
    2010
    Advisor
    Cox, Alan L.
    Degree
    Master of Science
    Abstract
    Virtualization is increasingly utilized for consolidating server resources to improve efficiency by conserving power and space. However, significant hurdles remain in achieving satisfactory performance in a virtualized system. Notably, virtualization of network I/O continues to be a performance barrier. The driver domain model of I/O virtualization suffers from an inherent network performance disadvantage due to the necessity of scheduling a driver domain. However, this virtualization model is desirable because of its fault tolerance and isolation properties. In this work, I argue that it is possible to overcome the barrier of network I/O performance while maintaining domain protection by providing a i mechanism which enables guests to operate the driver domain on their own behalf without the intervention of the scheduler. I describe my implementation of the worldswitch mechanism and evaluate its performance. I show that with the worldswitch enabled, guests achieve higher bandwidth and lower latency than in an unmodified system.
    Keyword
    Computer science; Applied sciences
    Citation
    Crompton, Joanna. "Optimizing network I/O virtualization through guest-driven scheduler bypass." (2010) Master’s Thesis, Rice University. http://hdl.handle.net/1911/62146.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [12052]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892