Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance limits of brain machine interfaces

    Thumbnail
    Name:
    3421183.PDF
    Size:
    3.705Mb
    Format:
    PDF
    View/Open
    Author
    Goodman, Ilan N.
    Date
    2010
    Advisor
    Johnson, Don H.
    Degree
    Doctor of Philosophy
    Abstract
    Understanding the constraints governing information transfer between electrodes and neurons is crucial to the effective design of neural prostheses. In sensory prostheses such as cochlear implants, information is transferred to the brain by stimulating neurons to produce sensation. In motor prostheses such as cortically controlled bionic limbs, neural recordings are processed to extract information needed to control a computer or mechanical device. In each case, performance of the prosthesis hinges on how effectively information can be conveyed to or from the device at the interface between brain and machine. In this thesis, we investigate the performance capabilities and constraints of brain machine interfaces (BMIs) using an information theoretic approach. Modeling the BMI as a vector Poisson process channel, we compute the information capacity of several different types of BMI channels. Since capacity defines the ultimate fidelity limits of information transmission by any system, this approach gives us an objective way of evaluating and comparing different types of BMIs by determining the best possible performance of each system given its unique constraints. For stimulation BMIs, we examine how the capacity of the system scales with the number of inputs, the constraints on the inputs, and inter-neuronal dependencies. For control BMIs, we quantify the loss in performance that results from using extracellular recordings, where signals from multiple neurons are received on a single electrode. This performance loss can be mitigated through spike sorting, and we show how the properties of the spike sorting algorithm have direct consequences for the resulting BMI capacity. We also provide extensions to the basic models to account for signal attenuation, cross-talk, and measurement noise. Finally, we discuss the real-world significance of BMI capacity in the context of Rate-Distortion Theory, and interpret the capacity results using performance criteria that are relevant to BMIs. This framework provides a direct way to compare competing systems, and allows us to make predictions about the specific conditions necessary for a BMI to achieve a desired performance level.
    Keyword
    Biology; Neurosciences; Electronics; Electrical engineering
    Citation
    Goodman, Ilan N.. "Performance limits of brain machine interfaces." (2010) Diss., Rice University. https://hdl.handle.net/1911/61988.
    Metadata
    Show full item record
    Collections
    • ECE Theses and Dissertations [597]
    • Rice University Electronic Theses and Dissertations [13409]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map