Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Time-domain terahertz magneto-spectroscopy of semiconductors

    Thumbnail
    Name:
    3362428.PDF
    Size:
    3.242Mb
    Format:
    PDF
    View/Open
    Author
    Wang, Xiangfeng
    Date
    2009
    Advisor
    Kono, Junichiro
    Degree
    Doctor of Philosophy
    Abstract
    The terahertz frequency range, 0.1-10 THz, is one of the richest frequency ranges in condensed matter spectroscopy. Many important excitations and dynamical phenomena occur in this range, including superconducting gaps, protein conformational modes, phonons, and plasmons, just to name a few. Spectroscopic studies in this region provide valuable insights into the quantum states and dynamics of confined, driven, or interacting electrons in solids. In this dissertation research I have developed a time-domain THz magneto-spectroscopy system to investigate various THz magnetic excitations in semiconductors, including a high-mobility two-dimensional electron gas (2DEG) in a GaAs quantum well and lightly-doped InSb. In the 2DEG, I have observed very long-lived (up to ∼ 50 ps) coherent THz oscillations, which correspond to a time-domain observation of cyclotron resonance. From the data both the real and imaginary parts of the conductivity can be simultaneously determined because of the phase-sensitive-detection nature of this technique. Magnetic field and temperature dependent results provide some important information on electron scattering in this system. In InSb, I have found that the THz transmittance of the sample sensitively changes with the temperature and magnetic field, showing a number of non-intuitive spectral features. In particular, I observed a sudden appearance and disappearance of transparency with increasing temperature, which resulted in a transparency window of a narrow temperature region (160-190 K), over a frequency range of 0.1-0.8 THz. Detailed theoretical simulations based on a cold magneto-plasma model demonstrate that this novel phenomenon is a manifestation of coherent interference of the cyclotron-resonance-active and cyclotron-resonance-inactive modes co-propagating through the magneto-plasma along the magnetic field direction. Finally, I have obtained some experimental results on the 1s--2p-- impurity transition at 1.6 K that provide insight on the nature of the magnetic-field-induced metal-to-insulator transition that is known to occur in this system. The materials studied in this research are highly tunable with external fields and doping and thus promising for future THz devices such as tunable THz detectors, filters, and Faraday rotators.
    Keyword
    Condensed matter physics; Optics
    Citation
    Wang, Xiangfeng. "Time-domain terahertz magneto-spectroscopy of semiconductors." (2009) Diss., Rice University. https://hdl.handle.net/1911/61813.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [13408]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map