Show simple item record

dc.contributor.authorDavenport, Mark A.
Hegde, Chinmay
Duarte, Marco
Baraniuk, Richard G. 2009-12-15T21:01:18Z 2009-12-15T21:01:18Z 2009-01
dc.identifier.citation M. A. Davenport, C. Hegde, M. Duarte and R. G. Baraniuk, "A Theoretical Analysis of Joint Manifolds," 2009.
dc.description.abstract The emergence of low-cost sensor architectures for diverse modalities has made it possible to deploy sensor arrays that capture a single event from a large number of vantage points and using multiple modalities. In many scenarios, these sensors acquire very high-dimensional data such as audio signals, images, and video. To cope with such high-dimensional data, we typically rely on low-dimensional models. Manifold models provide a particularly powerful model that captures the structure of high-dimensional data when it is governed by a low-dimensional set of parameters. However, these models do not typically take into account dependencies among multiple sensors. We thus propose a new joint manifold framework for data ensembles that exploits such dependencies. We show that simple algorithms can exploit the joint manifold structure to improve their performance on standard signal processing applications. Additionally, recent results concerning dimensionality reduction for manifolds enable us to formulate a network-scalable data compression scheme that uses random projections of the sensed data. This scheme efficiently fuses the data from all sensors through the addition of such projections, regardless of the data modalities and dimensions.
dc.language.iso en_US
dc.relation.IsPartOfSeries Rice University ECE Department Technical Report TREE0901
dc.subjectsensor arrays
joint manifolds
dc.title A Theoretical Analysis of Joint Manifolds
dc.type Report
dc.type.dcmi Text
dc.type.dcmi Text

Files in this item


This item appears in the following Collection(s)

  • DSP Publications [508]
    Publications by Rice Faculty and graduate students in digital signal processing.

Show simple item record