Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of transmembrane domain interactions by the syndecan family of integral membrane proteins

    Thumbnail
    Name:
    3309855.PDF
    Size:
    5.555Mb
    Format:
    PDF
    View/Open
    Author
    Dews, Ian Charles
    Date
    2008
    Advisor
    MacKenzie, Kevin R.
    Degree
    Doctor of Philosophy
    Abstract
    Protein-protein interactions between the transmembrane domains (TMDs) of integral membrane proteins have been increasingly implicated in contributing to biological function. In this thesis, I explore the strength, specificity and sequence dependence of interactions made by the TMDs of the syndecans, a family of four human cell adhesion molecules. Primary sequence alignment of all known syndecan TMDs reveals a completely conserved GxxxG dimerization motif. This motif has been shown to drive dimerization of many biological TMDs, and its strong conservation within the syndecan family would seem to suggest that all syndecans will display a common self-association phenotype. In contrast to this expectation, I show that the syndecan TMDs display a hierarchy of association phenotypes, with the syndecan-1 TMD showing very weak dimerization, the syndecan-3 and -4 TMDs showing strong dimerization, and the syndecan-2 TMD showing very strong dimerization. I further show that oligomerization of the syndecan TMDs depends upon the sequence element GxxxGxxxA, which is also conserved across all known syndecans. Using single and double point mutations, show that residue identities at two positions flanking the GxxxGxxxA motif combine to produce much of the difference in self-association strengths across syndecan paralogs. Residue identities at these intervening positions are different between paralogs but strongly conserved across orthologs, indicating an evolutionary pressure to maintain the hierarchy of association phenotypes. I further show that each syndecan TMD is capable of forming heteromeric complexes with at least two other paralogs and that these interactions are also supported by the GxxxG motif. The strength and stoichiometry of the heteromeric interactions are also paralog specific, meaning that residues in addition to the GxxxG motif are responsible for directing these interactions. These findings show that, although all syndecans possess a GxxxGxxxA sequence element that supports oligomerization, additional residues modulate the strength and stoichiometry of both homo- and heterotypic interactions. The strong conservation of residues that give rise to paralog specific homo- and heterotypic interactions suggests that the complexity of these interactions may play a role in mediating syndecan functions.
    Keyword
    Molecular biology; Cell biology
    Citation
    Dews, Ian Charles. "Characterization of transmembrane domain interactions by the syndecan family of integral membrane proteins." (2008) Diss., Rice University. http://hdl.handle.net/1911/22270.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [12052]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892