Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Atomistic modeling of nano-materials: From classical to ab initio simulations in different timescales

    Thumbnail
    Name:
    3309907.PDF
    Size:
    5.112Mb
    Format:
    PDF
    View/Open
    Author
    Lin, Yu
    Date
    2008
    Advisor
    Yakobson, Boris I.
    Degree
    Doctor of Philosophy
    Abstract
    Quickly developing computer techniques empower numerical simulations in materials science, which connect abstract theories and empirical experiments. Both deterministic molecular dynamics simulation and stochastic Monte Carlo simulation can employ various levels of theoretical models, from classical potential to the state-of-the-art ab initio method, for different simulation accuracies and needs. After the overview of a variety of methods used in this thesis, namely, classical potential, tight-binding (TB), semi-empirical, and density functional theory (DFT) methods, three following examples demonstrate how the computer-assisted simulations enable us to investigate and predict physical and chemical properties of the nano-materials. Mass diffusion through the graphene layer is the first example, where the DFT saddle point calculations are performed to identify the transition states of carbon absorption, addimer flipping over the graphene layer, and C2 molecule dissociation. In the second example on the cross-linked carbon nanotube bundles, tight-binding method is used for cross-link modeling and energetic stability analysis. Based on the semi-empirical molecular dynamics simulations of the tensile strength testing, a phenomenological model is proposed. After all the parameters are extracted from the quantum chemistry calculations, a series of canonical Monte-Carlo simulations are conducted to statistically analyze the mechanical properties of a nanotube bundle with thousands of cross-links. The last example on silicon nanowire demonstrates how various methods in different levels can be bridged by the energy decomposition in the energetic analysis. A novel electro-mechanical property of the pentagonal silicon nanowire is predicted by the electronic band structure calculations.
    Keyword
    Condensed matter physics; Engineering; Materials science
    Citation
    Lin, Yu. "Atomistic modeling of nano-materials: From classical to ab initio simulations in different timescales." (2008) Diss., Rice University. https://hdl.handle.net/1911/22177.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [14030]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map