Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    802.11b Operating in a Mobile Channel: Performance and Challenges

    Thumbnail
    Name:
    Ste2003Sep5802.11bOp.PDF
    Size:
    67.83Kb
    Format:
    PDF
    View/Open
    Author
    Steger, Christopher; Radosavljevic, Predrag; Frantz, Patrick
    Date
    2003-07-11
    Abstract
    In the past, the worlds of wireless voice and data transmission have been largely disjoint. Voice traffic has been carried over circuit-switched cellular links, and data has been largely restricted to packet-switched wireless LANs. Now, as consumers demand higher bandwidth connections without sacrificing mobility and traffic transitions from primarily voice to data, service providers must produce what is essentially a ubiquitous wireless LAN. To this end, we have studied the effects of a mobile channel on current generation 802.11 A, B, and G wireless LAN cards to see how readily they can be applied to more challenging environments. Not surprisingly, current WLAN technology suffers from significantly degraded performance when subjected to the rigors of a mobile channel. We created emulated bi-directional peer-to-peer links in which we were able to manipulate individual channel parameters. By isolating individual propagation effects and testing several different implementations of the standards, we have discovered which channel parameters have the most significant impact on performance. For instance, the large delay spreads typical of an outdoor channel seem to produce the most deleterious effect on throughput in 802.11b. We use our observations to evaluate the viability of direct-sequence spread-spectrum systems (similar to 802.11b) versus that of OFDM systems (like 802.11a and 802.11g). Then we offer suggestions for how future systems should be adapted in order to manage these effects, and we project the ultimate limitations and possibilities for subsequent 802.11-like systems.
    Description
    Conference paper
    Citation
    C. Steger, P. Radosavljevic and P. Frantz, "802.11b Operating in a Mobile Channel: Performance and Challenges," 2003.
    Keyword
    802.11b; Wireless; WLAN; Mobile; 802.11b; More... Wireless; WLAN; Mobile Less...
    Type
    Conference paper
    Citable link to this page
    https://hdl.handle.net/1911/20391
    Metadata
    Show full item record
    Collections
    • ECE Publications [1468]
    • Rice Wireless [268]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map