Show simple item record

dc.contributor.authorOdegard, Jan E.
Burrus, C. Sidney
dc.creatorOdegard, Jan E.
Burrus, C. Sidney 2007-10-31T00:56:57Z 2007-10-31T00:56:57Z 1996-05-20 1996-05-20
dc.identifier.citation J. E. Odegard and C. S. Burrus, "New class of wavelets for signal approximation," 1996.
dc.description Conference Paper
dc.description.abstract This paper develops a new class of wavelets for which the classical Daubechies zero moment property has been relaxed. The advantages of relaxing higher order wavelet moment constraints is that within the framework of compact support and perfect reconstruction (orthogonal and biorthogonal) one can obtain wavelet basis with new and interesting approximation properties. This paper investigates a new class of wavelets that is obtained by setting a few lower order moments to zero and using the remaining degrees of freedom to minimize a larger number of higher order moments. The resulting wavelets are shown to be robust for representing a large classes of inputs. Robustness is achieved at the cost of exact representation of low order polynomials but with the advantage that higher order polynomials can be represented with less error compared to the maximally regular solution of the same support.
dc.language.iso eng
dc.title New class of wavelets for signal approximation
dc.type Conference paper 2001-10-05
dc.citation.bibtexName inproceedings 2001-10-05
dc.contributor.orgDigital Signal Processing (
dc.citation.location Atlanta, GA
dc.citation.conferenceName IEEE International Symposium on Circuits and Systems (ISCAS)
dc.type.dcmi Text
dc.type.dcmi Text

Files in this item


This item appears in the following Collection(s)

  • DSP Publications [508]
    Publications by Rice Faculty and graduate students in digital signal processing.
  • ECE Publications [1278]
    Publications by Rice University Electrical and Computer Engineering faculty and graduate students

Show simple item record