Detection of Target Speakers in Audio Databases
Author
Magrin-Chagnolleau, Ivan; Rosenberg, Aaron; Parthasarathy, S.
Date
2004-01-14Abstract
The problem of speaker detection in audio databases is addressed in this paper. Gaussian mixture modeling is used to build target speaker and background models. A detection algorithm based on a likelihood ratio calculation is applied to estimate target speaker segments. Evaluation procedures are defined in detail for this task. Results are given for different subsets of the HUB4 broadcast news database. For one target speaker, with the data restricted to high quality speech segments, the segment miss rate is approximately 7%. For unrestricted data, the segment miss rate is approximately 27%. In both cases the segment false alarm rate is 4 or 5 per hour. For two target speakers with unrestricted data, the segment miss rate is approximately 63% with about 27 segment false alarms per hour. The decrease in performance for two target speakers is largely associated with short speech segments in the two target speaker test data which are undetectable in the current configuration of the detection algorithm.
Description
Conference Paper
Citation
Published Version
Keyword
Temporary; Signal Processing Applications; Temporary
Type
Conference paper
Citable link to this page
https://hdl.handle.net/1911/20077Metadata
Show full item recordCollections
- DSP Publications [508]
- ECE Publications [1468]