Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advanced MIMO-CDMA Receiver for Interference Suppression: Algorithms, System-on-Chip Architectures and Design Methodology

    Thumbnail
    Name:
    Guo2005May3AdvancedMI.PDF
    Size:
    1.742Mb
    Format:
    PDF
    View/Open
    Author
    Guo, Yuanbin
    Date
    2005-05-01
    Abstract
    MIMO (Multiple Input Multiple Output) technology is proposed in CDMA systems for much higher rate packet services. The receiver architecture is essential for the mobile devices to support high speed multimedia service. The design challenges come from both detection algorithms and hardware architectures. Much more complicated algorithms are required to suppress various interferences. However, the current hardware design archi-tecture and methodology is falling far behind the requirements of small size, low cost and power consumption. System-On-Chip (SoC) architectures are a major revolution taking place in the design of integrated circuits due to many advantages in the power consumption and compact size. The VLSI-oriented complexity reduction of the numerical algorithms plays an essential role to design efficient real-time architectures. Thus, the thesis contributes to three major as-pects: to propose high performance algorithms with realistic complexity in different chan-nel conditions; to propose real-time SoC architectures with area/speed/power efficiency; and to propose an efficient design methodology for modelling, partitioning/binding, verifi-cation and synthesis of the wireless systems. Specifically, to cut the design cycle and enable extensive architecture tradeoff study, an integrated wireless development methodology by High-Level-Synthesis for joint algorithm and architecture optimization is proposed. To address the performance/complexity tradeoff, we propose two LMMSE equalizer algorithms and SoC architectures for different channel conditions. Both an FFT circulant MIMO equalizer and a frequency domain iterative equalizer are proposed to avoid Direct-Matrix-Inverse for the well-conditioned channel as well as long channels working in bad conditions respectively. We then propose a displacement Kalman equalizer with VLSI-oriented architectural optimization for better performance in fast fading environments. For systems with the multi-usersâ signaling, we propose an adaptive Parallel-Residue-Compensation architecture with stage and user spe-cific weights by viewing the multiple transmitter antennas as virtual users to cancel the interferences explicitly. The increased accuracy in interference cancellation leads to signif-icant performance gain over both the complete and partial PIC. The complexity is reduced by using the commonality to avoid the direct interference cancellation. Finally, dynamic power management schemes are proposed to reduce the power consumption in the VLSI architectures using the inherent features of the interference suppression algorithms.
    Description
    PhD Thesis
    Citation
    Y. Guo, "Advanced MIMO-CDMA Receiver for Interference Suppression: Algorithms, System-on-Chip Architectures and Design Methodology," Ph.D. Thesis, 2005.
    Keyword
    MIMO; CDMA; System-on-Chip; Interference Suppression; MIMO; More... CDMA; System-on-Chip; Interference Suppression Less...
    Type
    Thesis
    Citable link to this page
    https://hdl.handle.net/1911/19937
    Metadata
    Show full item record
    Collections
    • ECE Publications [1468]
    • Rice Wireless [268]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map