Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multiuser Information Processing in Wireless Communication

    Thumbnail
    Name:
    Das2000Sep3MultiuserI.PDF
    Size:
    634.3Kb
    Format:
    PDF
    View/Open
    Author
    Das, Suman
    Date
    2000-09-20
    Abstract
    Wireless channel is not very conducive towards error-free raw data transmission. On the other hand the tremendous growth in wireless services has made the channel bandwidth a scarce resource and effective utilization of this resource is mandatory. Thus it is instructive to know the limits of a wireless channel. Shannonâ s theorems on channel capacity have been used so far to find the maximum rate at which data can be transmitted over any noisy channel. The theorem calculates the minimum signal to noise ratio (SNR) required to transmit data across a channel with zero probability of sequence error. However the result is practically inhibitive, as it requires encoding and decoding of infinite length code sequences. Practical finite codes never achieve this zero error limit. For practical code design bit-error-rate is often a preferred metric over sequence error rate. However there is no satisfactory method to compare the Shannonâ s capacity results with the bit error rate performance of the practical codes. We introduce the notion of distorted channel capacity to bridge this gap. This measure defines the capacity of a channel when a particular bit-error-rate is allowed. It can also be used as a benchmark to measure the â goodnessâ of a code. Our results show that most of the practical codes lie far beyond the capacity limit. We see that Turbo codes and the convolutional codes come close to this achievable at a prohibitively large computational cost. Specifically, for the convolutional codes the performance improves with large constraint length codes. However the optimal decoding complexity of the convolutional codes grow exponentially with this parameter. We propose a suboptimal decoding technique that has linear complexity in the size of the constraint length and provides close to optimal performance. We further extend our results to a multiuser environment. The optimal joint decoding complexity of multiple users data symbols is exponential in the number of users. Our proposed iterative joint interference cancellation and decoding technique provides computational gain without performance loss.
    Description
    PhD Thesis
    Citation
    S. Das, "Multiuser Information Processing in Wireless Communication," Ph.D. Thesis, 2000.
    Keyword
    CDMA; Detection; Decoding; CDMA; Detection; More... Decoding Less...
    Type
    Thesis
    Citable link to this page
    https://hdl.handle.net/1911/19830
    Metadata
    Show full item record
    Collections
    • ECE Publications [1468]
    • Rice Wireless [268]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map