Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-coherent and Partially Coherent Space-Time Constellations

    Thumbnail
    Name:
    Bor2003Jun3Non-coher.PDF
    Size:
    1.205Mb
    Format:
    PDF
    View/Open
    Author
    Borran, Mohammad Jaber
    Date
    2003-06-01
    Abstract
    With the rapid growth of wireless networks and multimedia applications, next generation cellular systems are expected to support data rates that are orders of magnitude higher than those currently available. Due to the limited amount of battery power in the mobile handsets, more power efficient signaling techniques need to be developed. Outdoor cellular systems are also required to be able to operate in rapidly fading environments. Exploiting multiple transmit and receive antennas to meet some or all of the above requirements have been recently proposed and extensively investigated. Nevertheless, designing signal constellations and codes that meet all of the above requirements and have practical design and decoding complexities still remains a challenge. In this work, we consider the code and constellation design problem for digital communication in a Rayleigh fading environment using a multiple-antenna system. We assume that the the channel coefficients are not known at the transmitter, and are only partially known at the receiver. Inspired by the Steinâ s lemma, we propose to use the Kullback-Leibler distance between conditional distributions to design space-time constellations. We show that this distance, while being relatively easy to derive and work with, provides an efficient performance and design criterion. Using the KL-based design criterion, we construct codes and constellations for multiple-antenna systems which can be decoded non-coherently or in the presence of channel estimation errors, and thus are suitable for fast block fading scenarios. We also show that the new constellations are more efficient than the existing designs for non-coherent systems at low signal-to-noise ratios or high spectral efficiencies. The new partially coherent constellations, on the other hand, provide significant performance improvements when the estimation variance is comparable to the reciprocal of the signal-to-noise ratio. We also propose a recursive construction for real unitary constellations with low decoding complexity, derive a KL-based design criterion and construction method for partially coherent coded modulation, and design partially coherent constellations for a multi-carrier system in a multipath environment. We show that, in the presence of channel estimation errors, the proposed codes and constellations achieve significant performance improvement over the conventional coding and modulation techniques.
    Description
    PhD Thesis
    Citation
    M. J. Borran, "Non-coherent and Partially Coherent Space-Time Constellations," Ph.D. Thesis, 2003.
    Keyword
    Non-coherent communication; partially coherent communication; multiple-antenna systems; space-time codes; constellation design; More... wireless communication; Non-coherent communication; partially coherent communication; multiple-antenna systems; space-time codes; constellation design; wireless communication Less...
    Type
    Thesis
    Citable link to this page
    https://hdl.handle.net/1911/19745
    Metadata
    Show full item record
    Collections
    • ECE Publications [1468]
    • Rice Wireless [268]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map