Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • George R. Brown School of Engineering
    • Electrical and Computer Engineering
    • ECE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Resource Allocation in Wireless CDMA Multimedia Networks

    Thumbnail
    Name:
    Aaz1999May3ResourceAl.PDF
    Size:
    616.9Kb
    Format:
    PDF
    View/Open
    Author
    Guo, Yile
    Date
    1999-05-20
    Abstract
    In this thesis we developed a resource allocation framework for wireless code division multiple access (CDMA) networks that support multi-class traffic with different data rates and bit error rate requirements. We proposed a new resource allocation scheme using joint adaptive power control and antenna array multiuser receiver in multipath fading system. In this scheme both transmit power and receiver filter adapt to time- varying fading channel state. By dynamically assigning users appropriate transmit power and receiver filter, the scheme can guarantee users' diverse quality of service (QoS) requirements and significantly improve quality and capacity of the system. We derived theory for abstraction of bandwidth resource and characterization of system capacity for multi-class traffic in multipath fading system. Bandwidth resource allocated to a user can be abstracted as "effective bandwidth", determined by the user's source data rate and target bit error rate. Capacity inmultipath fading system can be characterized by a theoretical bound. Simulations show that actual system capacity in multipath fading environment is close to the theoretical bound at large power constraint. The multirate multiuser receiver can achieve significantly larger capacity for users with higher source data rate and lower target bit error rate than conventional matched-filter receiver. The antenna array multiuser receiver can provide large capacity for users with higher signal-to-interference ratio requirement and achieve high bandwidth utility at lower power constraints. We also proposed a new call admission control scheme for CDMA cellular system that incorporates adaptive power control and antenna array multiuser receiver and supports multi-class traffic. The scheme is based on estimation of othercell interferenceand implemented distributively in each cell. The scheme can adapt to various traffic distribution. Capacity determined by the admission control agrees well with the actual system capacity in the simulation. The scheme can achieve high bandwidth utilization and guarantee QoS requirements of all the users.
    Description
    PhD Thesis
    Citation
    Y. Guo, "Resource Allocation in Wireless CDMA Multimedia Networks," Ph.D. Thesis, 1999.
    Keyword
    Admission Control; CDMA; Networks; Cellular Systems; Admission Control; More... CDMA; Networks; Cellular Systems Less...
    Type
    Thesis
    Citable link to this page
    https://hdl.handle.net/1911/19649
    Metadata
    Show full item record
    Collections
    • ECE Publications [1468]
    • Rice Wireless [268]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map