Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Velocity analysis in the presence of uncertainty

    Thumbnail
    Name:
    3216700.PDF
    Size:
    8.166Mb
    Format:
    PDF
    View/Open
    Author
    Dussaud, Eric Albert
    Date
    2005
    Advisor
    Symes, William W.
    Degree
    Doctor of Philosophy
    Abstract
    Velocity analysis resolves relatively long scales of earth structure, on the order of 1 km. Migration produces images with length scales (wavelengths) on the order of 10's of m. In between these two scale regimes lies another, corresponding roughly to structures between 60 to 300m in extent, in which the resolution of velocity analysis is uncertain and the energy of images is small to non-existent. This thesis aims at assessing the impact on velocity analysis of uncertainty at these intermediate length scales, using ideas on time reversal and imaging in randomly inhomogeneous media developed by Borcea and colleagues, in combination with velocity estimation methods of differential semblance type. The main result of this thesis is that the noise in seismic reflection data associated with the middle scales in velocity heterogeneity does not strongly affect the estimates of the long-scale component of velocity, if these estimates are obtained using a statistically stable formulation of differential semblance optimization. Hence the nonlinear influence of uncertainty in the middle scales does not propagate down the length scale. This is in contrast with the results of Borcea and colleagues, who have shown that prestack images are strongly affected, implying that the uncertainty in the middle scales does certainly propagate up the length scale. Random perturbations associated with the middle scales of velocity heterogeneity yield measurable phase shifts in the reflection data. However, it is known that cross-correlations of neighboring seismic traces are stable against these perturbations, under some circumstances. The main theoretical achievement of this thesis, presented in Chapter 3, is to extend this stability result to laterally homogeneous background velocity models, and to cross-correlations containing slowly-varying weights. Chapter 4 shows that differential semblance functionals, specialized to layered modeling, can be written entirely in terms of weighted cross-correlations, and therefore argues that the velocity analysis algorithm and the associated velocity estimates inherit the statistical stability property. A quantitative verification of the stability claims is provided in Chapter 5.
    Keyword
    Geophysics; Mathematics
    Citation
    Dussaud, Eric Albert. "Velocity analysis in the presence of uncertainty." (2005) Diss., Rice University. https://hdl.handle.net/1911/18897.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [13403]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map