Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Metabolic biotinylation of the adenoviral capsid: Avidin-based applications and studies of ligand-targeted gene delivery

    Thumbnail
    Name:
    3168064.PDF
    Size:
    32.72Mb
    Format:
    PDF
    View/Open
    Author
    Campos, Samuel Knox
    Date
    2005
    Advisor
    Barry, Michael A.
    Degree
    Doctor of Philosophy
    Abstract
    Adenoviral vectors have great potential for use in gene therapy and genetic immunization. The targeting of Ad vectors to the relevant tissue and cell types in vivo could greatly improve their safety and performance by lowering the effective dosage required for therapeutic levels of gene expression. Redirection of Ad vector tropism will require physical modifications of the adenoviral capsid but direct genetic modification of the Ad capsid has so far been limited to small peptides. A novel system for the attachment of targeting ligands to the Ad capsid, based on the extremely strong avidin-biotin interaction, is described herein. The genetic insertion of a biotin acceptor peptide (BAP) into the fiber, protein IX, or hexon components of the Ad capsid has resulted in vectors that are metabolically biotinylated upon production in host cells. Avidin-dependent redirection of transduction through a variety of biotinylated ligands is greatly dependent on the nature of the biotinylated capsid protein. While targeted transduction via the fiber was efficient through a broad array of ligand-receptor interactions, redirection of binding and uptake through the more abundant protein IX and hexon resulted in poor transduction. Although the basis of these differences has not been determined, it most likely reflects functional differences between the capsomeres during the process of vector uptake and trafficking. This study represents the first direct comparison of transduction through the various capsomeres and strongly suggests that future targeting efforts should be focused on fiber modification. In addition to the functional studies on Ad-IX-BAP, structural analysis by cryoelectron microscopy and particle reconstruction is presented. The C-terminal BAP fusion was used as a structural tag to visualize the position of IX within the capsid. Results contradict all previous reports on the location of IX and suggest the surface accessible density currently assigned as IIIa is actually attributable to protein IX. These studies highlight the need for a more thorough analysis of adenoviral structure and the complex interactions between its components.
    Keyword
    Molecular biology; Microbiology
    Citation
    Campos, Samuel Knox. "Metabolic biotinylation of the adenoviral capsid: Avidin-based applications and studies of ligand-targeted gene delivery." (2005) Diss., Rice University. https://hdl.handle.net/1911/18742.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [13409]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map