Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of bioactive polyurethaneureas to support endothelialization

    Thumbnail
    Name:
    3122493.PDF
    Size:
    6.553Mb
    Format:
    PDF
    View/Open
    Author
    Jun, Ho-Wook
    Date
    2004
    Advisor
    West, Jennifer L.
    Degree
    Doctor of Philosophy
    Abstract
    Vascular diseases are responsible for the majority of deaths in the United States. Synthetic materials have been developed for blood vessel substitutes but not suitable for small diameter vascular applications such as coronary artery bypass grafting (CABG). Polyurethaneureas (PUU) have been widely used for biomedical applications due to their excellent mechanical properties and relatively good biocompatibility. However, like other synthetic materials, they are generally thrombogenic on exposure to blood. Endothelialization of synthetic grafts is a good strategy to improve graft patency. However, the graft patency is dependent on retention of endothelial cells on exposure to physiological shear stress. In this study, we developed bioactive polyurethaneureas to support endothelialization. First, we have demonstrated that endothelial cell behaviors could be altered by the surface YIGSR peptide concentrations. Bioactive polyurethanureas (PUUYIGSR) have been developed by incorporating YIGSR peptide sequences into polymer main chain, and improved endothelialization has been observed on the surface. In addition, PEG- and YIGSR-modified polyurethaneureas (PUUYIGSR-PEG) have been developed, and enhanced endothelialization and improved thromboresistance have been obtained simultaneously. Our bulk modification strategy allowed us to fabricate microporous scaffolds without interfering bioactivity of incorporated peptide sequences. Microporous scaffolds have been also used as a carrier of vascular endothelial growth factor (VEGF). The synergistic effects of peptide sequences, microporous structure, and incorporated VEGF on endothelialization have been observed. Additionally, nitric oxide (NO) releasing polyurethanes (PUBD-NO) have been developed by incorporating NO donor into the polymer main chain. NO was successfully released from the PUBD-NO in controlled manner and reduced platelet adhesion and smooth muscle cell proliferation but improved endothelialization proliferation.
    Keyword
    Biomedical engineering; Health sciences; Medicine; Surgery
    Citation
    Jun, Ho-Wook. "Development of bioactive polyurethaneureas to support endothelialization." (2004) Diss., Rice University. https://hdl.handle.net/1911/18652.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [13409]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map