Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Magnitude estimation of conceptual data dimensions for use in sonification

    Thumbnail
    Name:
    3021207.PDF
    Size:
    4.509Mb
    Format:
    PDF
    View/Open
    Author
    Walker, Bruce N.
    Date
    2000
    Advisor
    Lane, David M.
    Degree
    Doctor of Philosophy
    Abstract
    Most data exploration tools are exclusively visual, failing to exploit the advantages of the human auditory system, and excluding students and researchers with visual disabilities. Sonification uses non-speech audio to create auditory graphs, which may address some limitations of visual graphs. However, almost no research has addressed how to create optimal sonifications. Three key research questions are: (1) What is the best sound parameter to use to represent a given data type? (2) Should an increase in the sound dimension (e.g., rising frequency) represent an increase or a decrease in the data dimension? (3) How much change in the sound dimension will represent a given change in the data dimension? Experiment 1 simply asked listeners which of two sounds represented something that was hotter, faster, etc. However, participants seemed not to make cognitive assessments of the sounds. I therefore proposed magnitude estimation (ME) as an alternative, less transparent, paradigm. Experiment 2 used ME with visual stimuli (lines and filled circles), replicating previous findings for perceptual judgments (length of lines, size of circles). However, judgments of conceptual data dimensions (i.e., the temperature, pressure, or velocity a given stimulus would represent) yielded slopes different from the perceptual judgments, indicating that the type of data being represented influences value estimation. Experiment 3 found similar results with auditory stimuli differing in frequency or tempo. Estimations of what temperature, pressure, velocity, size, or number of dollars a sound represented differed, indicating that both visual and auditory displays should be scaled according to the type of data being displayed. Experiment 4 presented auditory graphs and asked which of two data descriptions the sounds represented. Data sets based on the equations determined in Experiment 3 were preferred, providing validation of those slope values. Results also supported the use of the unanimity of mapping polarities as a measure of a mapping's effectiveness. Replication with different users and sounds is required to assess the reliability of the slopes. However, ME provides an excellent way to obtain a function relating conceptual data dimensions to display dimensions, which can be used to create more effective, appropriately scaled sonifications.
    Keyword
    Audiology; Experimental psychology
    Citation
    Walker, Bruce N.. "Magnitude estimation of conceptual data dimensions for use in sonification." (2000) Diss., Rice University. http://hdl.handle.net/1911/18048.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [12052]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892