Show simple item record

dc.contributor.advisor Ghorbel, Fathi H.
dc.creatorGandhi, Prasanna Subhash
dc.date.accessioned 2009-06-04T06:31:20Z
dc.date.available 2009-06-04T06:31:20Z
dc.date.issued 2001
dc.identifier.urihttp://hdl.handle.net/1911/17967
dc.description.abstract Harmonic drives are special flexible gear systems widely used in space robots, the semiconductor industry, precision measuring devices, and military applications because of their advantages including near-zero backlash, high gear reduction, compact design, and light weight. On the other hand, they possess nonlinear transmission attributes including kinematic error, friction, flexibility, and hysteresis that are responsible for transmission performance degradation. Therefore, in-depth understanding, accurate modeling and control of transmission attributes are critical to the use of harmonic drives. There has been little research to date concerning these transmission attributes. This thesis characterizes harmonic drive transmission attributes and develops nonlinear control algorithms to enhance harmonic drive performance. The complete characterization of kinematic error in this research provides a new perspective to the understanding of the error. This thesis proposes an accurate hysteresis model in a differential equation form along with a constructive parameter identification scheme and extensive experimental validation. Furthermore, we extend a recently developed, accurate, dynamic friction model in a differential equation form to represent harmonic drive position dependent friction. Finally, several model-based nonlinear control algorithms are developed to improve harmonic drive performance. The most complex development compensates for kinematic error in presence of all other transmission attributes (flexibility, hysteresis and friction). Asymptotic stability with these algorithms is established using Lyapunov stability theory. The superior performance exhibited by these algorithms as compared to the traditional schemes is demonstrated using extensive simulation and experimental results. Thus, this thesis provides a solid foundation for performance improvement with harmonic drives as well as with other systems sharing one or more of the transmission attributes.
dc.format.extent 178 p.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.subjectElectronics
Electrical engineering
Mechanical engineering
dc.title Modeling and control of nonlinear transmission attributes in harmonic drive systems
dc.type.genre Thesis
dc.type.material Text
thesis.degree.department Electrical and Computer Engineering
thesis.degree.discipline Engineering
thesis.degree.grantor Rice University
thesis.degree.level Doctoral
thesis.degree.name Doctor of Philosophy
dc.identifier.citation Gandhi, Prasanna Subhash. "Modeling and control of nonlinear transmission attributes in harmonic drive systems." (2001) Diss., Rice University. http://hdl.handle.net/1911/17967.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record